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We study experimentally and theoretically structural defects which are formed during the transition

from a laser cooled cloud to a Coulomb crystal, consisting of tens of ions in a linear radio frequency trap.

We demonstrate the creation of predicted topological defects (‘‘kinks’’) in purely two-dimensional

crystals and also find kinks which show novel dynamical features in a regime of parameters not considered

before. The kinks are always observed at the center of the trap, showing a large nonlinear localized

excitation, and the probability of their occurrence saturates at �0:5. Simulations reveal a strong

anharmonicity of the kink’s internal mode of vibration, due to the kink’s extension into three dimensions.

As a consequence, the periodic Peierls-Nabarro potential experienced by a discrete kink becomes a

globally confining potential, capable of trapping one cooled defect at the center of the crystal.
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Stable, collective configurations that are nonperturba-
tive, such as solitons, kinks, vortices, monopoles, and other
structural defects, have been extensively studied theoreti-
cally and experimentally in a variety of fields in physics,
ranging from fluid mechanics, condensed matter, atomic
physics, and optics to high energy physics and cosmology
[1–3]. These nonlinear solutions are localized, particlelike
objects that can propagate without dispersing and acquire
stability which can often be explained by their underlying
topological nature. Such topological configurations can be
formed during a first- or second-order phase transition
[4–6]. Over the last decades, there has been significant
interest in the study of topological defects in discrete
systems, which can show similar nonlinear phenomena,
such as in the Frenkel-Kontorova (FK) model [7].
Discretized solitons are often referred to as kinks, with
translation invariance replaced by lattice periodicity, and
the kinks, propagating along the lattice, are subject to the
so called Peierls-Nabarro (PN) potential [7]. They were
experimentally studied, e.g., in waveguide arrays [8] and
proposed with, e.g., cold atoms in optical lattices [9].
Discrete defects can be favorable for precise control of
their gap-separated, localized modes of oscillation and, in
particular, for studying quantum coherence effects [10,11]
and quantum information prospects [12–14].

In particular, trapped ions [15] offer a promising plat-
form for studying the formation and structure of topologi-
cal defects, as well as for the exploration of their quantum
properties. When applying laser cooling to trapped ions,
they undergo a transition from a state of a chaotic cloud to
an ordered structure, a Coulomb crystal [16]. Isolated from
environmental disturbances in an ultrahigh vacuum, 1D

chains of ions permit investigating quantum effects at the
forefront of quantum metrology [17], quantum computing
[18,19], and quantum simulations [20,21]. By adiabatically
altering the trapping parameters, it is possible to generate
phase transitions from one- (linear) to two- (zigzag) and
three-dimensional crystals [22–24]. Such structural transi-
tions have been proposed to feature quantum phase tran-
sitions [25,26].
The experimental creation of localized defects in ion

crystals has been achieved during a crystallization of the
ion cloud [15]. It has also been suggested that their creation
could be triggered by a nonadiabatic change of the trapping

FIG. 1 (color online). Coulomb crystals, here with 31 ions
(!z=!y � 1:34). (a) Top: A CCD image of the fluorescence

light of individual ions trapped and laser cooled in a zigzag
configuration. Bottom: Circles indicate the fitted positions, while
crosses depict the expected positions at the given trapping
parameters, derived by MD simulations. (b) Same as in (a);
however, the ions in the center region form an extended kink
defect (dashed box). While the ions to the left of the center form
a zigzag structure, as in (a), the positions on the right are
mirrored about the x axis.
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potential [15,27,28]. Realizations of the FK model with ion
strings have been suggested in Refs. [29–31]. The quantum
mechanical properties of kinks in ion traps have been
theoretically explored in Ref. [27], and the connection
with the inhomogenous Kibble-Zurek mechanism has
been explored in Refs. [28,32]. Currently, the latter is
under investigation, with the creation of kinks reported
by quenching the radial [33] and axial [15,34]
confinement.

In this Letter, we present the experimental realization of
predicted, extended 2D defects as well as a new class of
quasi-3D defects, both formed spontaneously and remain-
ing stable when laser cooling and crystalizing a cloud of
ions [35]. In the thermodynamic limit, as well as in circular
configurations [27,36], similar discrete solitons (kinks)
become topologically protected. For the 3D kink, we
directly observe a highly nonlinear oscillation at its local-
ized, gapped mode and reveal that the probability to
observe a kink at equilibrium shows a saturation at �0:5,
as the number of ions in the crystal is increased. We study
numerically the structural and dynamical properties of
these kinks and find that their extension into 3D causes a
modification of the Peierls-Nabarro potential, which
results in an inherent trapping of the kink at the center of
the Coulomb crystal.

The experimental setup consists of a linear Paul trap
(�rf ¼ 2�� 6:22 MHz) [37,38] trapping Coulomb crys-
tals of different size of choice (here, 10–65 photoionized
24Mgþ ions). Experiments were carried out at a single ion
trapping frequency of !x � 2�� 56 kHz (axial direc-
tion), while the radial frequencies were varied in the
range of !y � 2�� 320–630 kHz, corresponding to a

total depth of the rf-trapping potential energy of kB10
4 K.

The radial indegeneracy!z=!y is tuned between 1 and 1.4.

The ions are Doppler cooled via one laser beam, tilted
(� 5�) with respect to the x axis. It drives the S1=2-P3=2

transition (� ¼ 280 nm, natural linewidth � � 2� �
42 MHz) and is detuned by � � 2� �=2 at a saturation
of about 0.2 (Doppler cooling limit TD � 1 mK at � ¼
�=2). Data are acquired with a CCD camera detecting
fluorescence light of 24Mgþ to determine the ion positions
(see Fig. 1). The resolution is given by the magnified
(10�) pixel size (0:8 �m) of the image for 200 ms. By
decreasing (increasing) the radial (axial) confinement, we
reproduce increasingly complex structures. At constant
confinement, the structure and its dimensionality depend
on the number of trapped ions due to the impact of their
charge on the total potential.

To calibrate our system and to gain a deeper under-
standing of the structure and the dynamics within the
crystals, we numerically simulate our experimental results
by a molecular dynamics (MD) code [39]. We take into
account the full time-dependent trapping potential and run
an optimization routine which considers all trapping
parameters and the projection of the crystal plane (xy) on

the CCD chip chosen roughly perpendicular to the z axis.
We reproduce all observed crystals consistently, with a
maximal average deviation of 0:5 �m per ion. We obtain
identical results in a simulation using a constant harmonic
potential, verifying that micromotion [40] does not alter
our findings.
In the investigated regime of trapping parameters, for a

number of ions between 20 and 60, zigzag structures with
and without local defects occur (see Fig. 1). The duration
after which a zigzag structure or a structural defect gets
destroyed (e.g., by collision with background gas) amounts
to 10 s and exceeds the natural time scale in Coulomb
crystals (� 1=!x) by 5 orders of magnitude. The two
imaged structures in Fig. 1 are obtained for !z=!y �
1:34, where !z is the in-plane and !y the out-of-plane

radial trapping frequency. Figure 1(a) presents the estab-
lished zigzag configuration, which is the global minimum
of potential energy, while Fig. 1(b) depicts a local mini-
mum, incorporating an extended kink. The zigzag struc-
tures considered so far are extended in two dimensions (xy)
only, independent of the presence of a kink. Keeping the
axial confinement constant and lowering!z=!y, we create

qualitatively new defects [Fig. 2(a)]. For the rest of this
Letter, we discuss their occurrence and properties
(!z=!y � 1:05). In this regime, zigzag structures without

a kink occur, starting with 27 ions, and remain two dimen-
sional with up to 52 ions. With 53 ions, a structural phase
transition into 3D can be deduced from the numerical
results, the space charge of the ions defocusing a few central
ions slightly out of the zigzag plane (by & 1 �m).

FIG. 2 (color online). Coulomb crystals containing 50 ions,
similar to those depicted in Fig. 1; however, for reduced asym-
metry of the radial confinement,!z=!y � 1:05. (a) CCD images

of two crystals obtained for identical experimental parameters.
Top: Pure zigzag featuring the minimal energy configuration.
Bottom: Two central ions clearly deviate and show a blurred
extension in the radial direction. As in Fig. 1(b), the right parts of
the crystals are close to identical while the left part of the lower
crystal depicts a flipped ‘‘zagzig’’ structure, separated by the two
central ions. (b) Integrated numerical results for the structure
depicted in (a)-bottom projected onto the crystal plane.
(c) Numerically derived components of ion oscillations in the
localized, low-frequency normal mode of the kink in (perpen-
dicular to) the crystal plane are depicted on the left (right).
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Further increasing the number of ions causes a growing
fraction of the ions to extend into the z direction; however,
the global minimum configuration (which remains close to
a planar zigzag) is still unambiguously identifiable. For
more than 56 ions, we observe projections of complex
structures.

Starting with 46 ions, we detect the random occurrence
of local defects mainly involving two ions. The directly
observable features of the novel class of kinks are the
following. (i) They sustain a large motional amplitude of
the two center ions along the y axis, comparable to the
radial extension of the crystal, causing the blurring of their
images [see Fig. 2(a)]. (ii) The probability for the occur-
rence of a kink increases with increasing the number of
ions and saturates at �0:5 for more than 50 ions (see
Fig. 3). (iii) Kinks occur at the center of the crystal only.
In order to elucidate feature (i), we use MD simulations as
described above and reproduce the positions of the ions
and their dynamics in the xy plane [see Fig. 2(b)]. The
crystals including one defect remain nearly identical to a
pure zigzag, except at the center. There, the central ions
extend into the transverse (z) direction [see Fig. 2(c)], even
for parameters such that the zigzag crystal without a defect
is still planar. We further investigate the properties of the
kinks numerically, applying two separate approaches: (1) a
linearization of the oscillations of the ions at small ampli-
tudes and (2) a simulation of the adiabatic dynamics of the
kinks as they move along the lattice.

The dispersion relations for the pure zigzag and the
crystal with kink (Fig. 2) exhibit for the largest fraction
indistinguishable mode spectra. However, whereas the

lowest mode of the zigzag is the axial center of mass
mode (with !x), the kink features a gapped mode below
!x, localized on the center ions. A dynamical simulation,
assuming a thermal energy of kBTD for all modes and
integrating a ‘‘fluorescence’’ image from the numerically
obtained ion trajectories, reproduces accurately the blur-
ring of the central ions [see Fig. 2(b)]. We numerically
exclude micromotion or the near-axial incidence of the
laser at realistic temperatures of �5TD to feature the
blurring. In fact, it is reproduced exactly, even assuming
an excitation of the low-frequency mode only. A careful
analysis of the dynamics and mode structure [39] reveals
that the large amplitude is due to the highly anharmonic
oscillation of the ions on the localized low-frequency
mode. In addition, the frequency of the low energy mode
!low can be controlled by tuning the radial trapping
frequencies !z=!y over a range of 0 to �2!x.

To further elucidate features (ii) and (iii) of the observed
kinks, we focus on this mode that describes the ion oscil-
lations near a minimum of the PN potential. For constant
ion density (obtainable, e.g., in a 2D ring trap [27,36] or in
an anharmonic trap [41]), the PN potential is periodic with
the inter-ion distance. In a harmonic trap, the space charge
density and the radial displacement decrease out of the
center of the crystal. If !z=!y � 1, the depth of the local

minima of the PN potential decreases progressively toward
the sides [28,32], where the kink dissolves into the linear
chain, after a random walk [42].
To analyze the motion of the 3D defect along the lattice

for our case of !z=!y * 1, we run a dynamical MD

simulation for a kink created initially at an off-centered
position. We follow its adiabatic dynamics while cooling
the motional degrees of freedom of the ions to overdamp
the dynamics. The kink ‘‘slides’’ down toward the center
of the crystal within an effective trapping potential.
Tracing the ‘‘downhill’’ motion of the kink allows us to
calculate the potential along the adiabatic kink trajectory.
We reveal that the effective PN potential is no longer
periodic, but rather modified to an overall trapping poten-
tial [depicted in Fig. 4(a)] and a global depth depending
quadratically on the total number of ions [see Fig. 4(b)].
For 44 ions, we derive from the simulation the global

potential depth for a kink within the crystal to be 10kBTD

[Fig. 4(a)]. This is the height of the barrier for the kink’s
escape to the sides. The minimal equilibrium temperature
of the ions is a few times TD. Therefore, during crystal-
lization and formation of the defects, a kink can be created
with sufficient energy to escape its trapping potential.
However, the potential depth for a kink rises with the
number of ions such that, for 46 ions, it already amounts
to �20kBTD, permitting us to trap the defect with higher
probability.
Since the minimum configuration has a Z2 symmetry (of

a zigzag and its mirror image), a defect spatially following
a kink must be its antikink, and all trapped defects will

FIG. 3 (color online). Experimentally derived probability for
the occurrence of a pure zigzag and a zigzag with a single kink,
as depicted in Fig. 2, formed during a nonadiabatic cooling-
induced transition from a cloud to a crystal, plotted versus the
number of ions. With 27 ions and more, the minimum energy
configuration is a zigzag structure (blue circles). Starting with
46 ions, we observe an increasing probability for a zigzag
structure with one kink (red rhombi) at the center of the crystal.
No simultaneous occurrence of two or more defects is observed.
The probability for observing one kink saturates at�0:5 (dashed
line) for up to 56 ions. The error bars represent the statistical
error (1�) based on the number of attempts.
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slide to the center and pairwise annihilate (at given exp.
temperature), either leaving one centered kink (if the initial
number of kinks was odd) or none. Thus, if the probabil-
ities to create an even and an odd number of kinks were
exactly equal and independent of the amount of ions, the
probability for the final occurrence of one kink would have
to be 0.5. The fact that we observe a small oscillation of the
occurrence around 0.5 (see Fig. 3), dependent on the
number of ions, might be a remainder of the initial statistics
for the number of created kinks. A concise analysis will be
published elsewhere [39]. Currently, we are not capable of
observing these processes directly, and our simulations
reveal a time scale for the kink motion in the crystal shorter
by 1–2 orders of magnitude compared to the current inte-
gration time. Observing this motion and the involved dy-
namics is a future direction for research. Additionally, it
will be interesting to analyze the interplay of thermal
effects, with the increase in the number of kinks being
formed during the crystallization as the number of ions is
increased, and to investigate the underlying dynamics.

Entering the quantum regime for large Coulomb crystals
and 2D structures by exploiting the kinks’ localized prop-
erties is another step. Cooling the localized gapped mode
to the motional ground state and studying its coupling to
the bath (of the rest of the modes) would permit us to
explore mesoscopic open quantum systems. The control-
lable trapping parameters offer the possibility to shape the
characteristics or mutate different species of the kinks, e.g.,
by tuning the frequency and gap of the localized mode as
described above. The ‘‘kink trap’’ storing kinks at the
center of the Coulomb crystal will be exploited for study-
ing the interaction of different classes of defects (such as a
kink combined with a mass defect or a second kink pro-
tected by a mass defect that we have observed [39]). These

can stabilize side by side without annihilating and are
forced into a short range interaction.
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