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We propose a method to suppress unwanted transition channels and achieve perfect population transfer

in multistate quantum systems by using composite pulse sequences. Unwanted transition paths may be

present due to imperfect light polarization, misalignment of the quantization axis, spatial inhomogeneity

of the trapping fields, off-resonant couplings, etc., or they may be merely unavoidable, e.g., due to

perturbing excitations in molecules and solids. Compensation of separate or simultaneous deviations in

polarization, pulse area, and detuning is demonstrated, even when these deviations are unknown, in three-

state V and � (ladder) systems and in a four-state Y system.
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Introduction.—Experiments in many fields of quantum
physics require well-defined quantum states and well-
defined interactions. For example, the basic ingredient of
the quantum computer is a well-defined qubit—a two-state
quantum system. Real quantum systems, however, possess
many states, and special care is needed to isolate just two
of them. In real and artificial atoms, this is usually done
with polarized laser light, carefully aligned with the quan-
tization axis. However, unwanted transition channels may
still be present, which reduce the fidelity of the operations.
For example, when an ultracold atomic ensemble held in
an optical dipole trap is addressed by right circularly
polarized (�þ) light, many atoms often ‘‘see’’ an admix-
ture of �þ and �� light (i.e., elliptical polarization) since
not all of them are exactly in the focus of the laser fields.
Unwanted transitions may also be present due to imperfect
polarization or alignment, off-resonant couplings, perturb-
ing excitations in molecules and solids, etc.

In this Letter, we propose a simple and efficient tech-
nique for automatic compensation of such errors, even
without knowing their magnitudes, which uses composite
pulse sequences to dynamically suppress unwanted transi-
tions, while simultaneously controlling the qubit in a
robust way. We illustrate the technique in three- and
four-state quantum systems forming linkages reminiscent
of the letters V,�, and Y, as shown in Fig. 1; the technique
is, however, also applicable to more complex linkage
patterns. We demonstrate compensation of both indepen-
dent and simultaneous variations in polarization, pulse
area, and single-photon detuning (e.g., due to Stark shifts).
The technique can also be used for compensation of
unwanted two-photon and multiphoton detuning.

Composite pulse sequences have been used for several
decades in nuclear magnetic resonance [1,2] and, since
recently, in quantum information processing [3–6] and
quantum optics [7–10] as a versatile control tool for quan-
tum systems. Some of the basic ideas have been developed
even earlier, in research on achromatic polarization retard-
ers [11,12]. While composite pulses have mainly been used

for two-state quantum systems, there are also studies in
three-state and multistate systems [10,13].
A composite pulse is a sequence of pulses with well-

defined relative phases, which are used as control
parameters in order to compensate imperfections in the
excitation profile produced by a single pulse or to shape the
profile in a desired manner. The imperfections may be
caused by an imprecise pulse area, an undesirable fre-
quency offset, or an unwanted frequency chirp. Here, we
use the toolbox of composite pulses to design recipes for
suppression of unwanted transition paths, which may turn a
qubit or a simple three-state ladder system into a complex
tree of states, with an unavoidable loss of efficiency.
V and � systems.—The dynamics of a coherently

driven V system (Fig. 1, left) obeys the Schrödinger
equation i@@tcðtÞ ¼ HðtÞcðtÞ, where the vector cðtÞ ¼
½c1ðtÞ; c2ðtÞ; c3ðtÞ�T contains the probability amplitudes of
the three states. The Hamiltonian in the rotating-wave
approximation reads

HVðtÞ¼ð@=2Þ�ð�11��22��33Þþð@=2Þ½�12ðtÞei�12�12

þ�13ðtÞei�13�13þH:c:�; (1)

where � ¼ !0 �! is the detuning between the laser
carrier frequency ! and the Bohr transition frequency
!0, and�jk ¼ jjihkj. The magnitudes of the Rabi frequen-

cies are�jkðtÞ ¼ jdjk � EðtÞj=@, whereEðtÞ is the envelope

FIG. 1 (color online). V, � (ladder), and Y systems.
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of the laser electric field and djk is the transition dipole

moment of the respective transition j$ k; the phases of
the Rabi frequencies are �12 and �13. We assume that the
two Rabi frequencies have the same time dependence fðtÞ
and we introduce the root-mean-square (rms) peak Rabi
frequency� and the mixing angle � via�12ðtÞ ¼ �fðtÞ�
cos� and �13ðtÞ ¼ �fðtÞ sin�. We assume hereafter that
the composite sequence duration is shorter than the sys-
tem’s decoherence times.

An important example of a V system is the transition
between the magnetic sublevel m ¼ 0 (state j1i) of a
ground level with an angular momentum j ¼ 0 or 1 and
the magnetic sublevels m ¼ 1 (state j2i) and m ¼ �1
(state j3i) of an upper level with an angular momentum
j ¼ 1 driven by an elliptically polarized laser pulse. The
latter is a superposition of two circularly polarized �þ and
�� pulses [14]: then,�12 ¼ �þ and�13 ¼ ��, the angle
of rotation of the polarization ellipse is � ¼ ð�12 �
�13Þ=2, and the ellipticity is " ¼ cos2�. The
values � ¼ 0, �=4, �=2 (" ¼ 1, 0, �1) correspond,
respectively, to �þ, linear, and �� polarizations. The
dynamics of the V system is similar to that of the� system
(Fig. 1, center), since the Hamiltonian of the latter is given
by Eq. (1) by interchanging states j1i and j2i.

Our objective is to transfer the population of state j1i to
state j2i and completely suppress the excitation path j1i $
j3i by using the phases �1j as control tool parameters. In

the above example of magnetic sublevels, this can be
achieved by a �þ polarized � pulse. However, if the
polarization is not perfectly �þ, then the atom will

‘‘see’’ some �� polarized light and the unwanted channel
j1i $ j3i will open up. We show below that composite
pulses can compensate such an admixture of unwanted
polarization, even without knowing its amount, and
achieve perfect transfer j1i ! j2i.
The V system described by the Hamiltonian (1) can be

transformed by the Morris-Shore transformation [15] into a
decoupled state jdi ¼ �e�i�13 sin�j2i þ e�i�12 cos�j3i
and a two-state system composed of state j1i and a coupled
state jci ¼ ei�12 cos�j2i þ ei�13 sin�j3i driven by the fol-
lowing Hamiltonian:

~H2ðtÞ ¼ ð@=2Þf�ð�11 ��ccÞ þ ½�fðtÞ�1c þ H:c:�g:
(2)

We note that no population is permanently trapped in the
decoupled state since its composition changes for each
constituent pulse because the phases �12 and �13 change.
The corresponding propagator can be expressed in terms of
the complex Cayley-Klein parameters a and b (with jaj2 þ
jbj2 ¼ 1) as [16]

~U ¼ a b

�b? a?

" #
: (3)

For resonant pulses (� ¼ 0), with rms area A ¼Rtf
ti �fðtÞdt, the Cayley-Klein parameters are independent

of the pulse shape: a ¼ cosðA=2Þ and b ¼ �i sinðA=2Þ.
For � � 0, a and b depend on the pulse shape.
The propagator in the original basis reads [10,16,17]

Uð�Þ ¼
a bei�12C bei�13S

�b?e�i�12C a?C2 þ �S2 ða? � �Þe�2i�SC
�b?e�i�13S ða? � �Þe2i�SC �C2 þ a?S2

2
664

3
775; (4)

where S ¼ sin�, C ¼ cos�, and � ¼ exp½iRtf
ti �ðtÞdt=2�.

Complete population transfer j1i ! j2i with a single pulse
implies jU21j ¼ 1, i.e., a ¼ 0, jbj ¼ 1, and � ¼ 0.
However, if � � 0, then the coupling between states j1i
and j3i is nonzero and some population is unavoidably lost
from state j2i: transferred to j3i or left in j1i.

Deviation of � from 0 can be compensated to an arbi-
trary order by composite pulses. The propagator of a
composite sequence of n pulses reads

UðnÞ ¼ Uð�nÞ � � �Uð�2ÞUð�1Þ; (5)

where �k ¼ ð�ðkÞ12 ; �ðkÞ13 Þ are the phase shifts of the kth
pulse in the sequence with Uð�kÞ given by Eq. (4). The

phases �ðkÞ1j are free parameters. We determine them by

setting P1!2 ¼ jUðnÞ21 j2 ¼ 1 for � ¼ 0 and nullifying the

coefficients in the Taylor expansion of P1!2 vs � to the
highest possible order. Since the global phase is irrelevant,
we take �1 ¼ 0. This compensation is demonstrated in

Fig. 2 (upper frame). For longer sequences (larger n), the
transition profile P1!2ð�Þ broadens and the unwanted ran-
sition j1i ! j3i is suppressed for a larger range of �.
Remarkably, for sufficiently long composite sequences,
the transition j1i ! j3i can be suppressed even if its cou-
pling is larger than that of the transition j1i ! j2i, i.e., in
the range � > �=4. Similarly, Fig. 2 (lower frame) shows
suppression of the unwanted transition j2i ! j3i in the �
system of Fig. 1 (center). The (3e) curves in Fig. 2 dem-
onstrate the relative stability of results with respect to
random errors in the phases.
Next, we have designed composite sequences which

compensate simultaneous deviations in the mixing angle
� from 0 and the rms pulse area A from � (Fig. 3, top
frames) and in the mixing angle � from 0 and the single-
photon detuning� from resonance (Fig. 3, bottom frames).
In order to find the composite phases, we use the Taylor
expansion of P1!2 with respect to both � and A (or �) and
annul the coefficients of as many successive terms as
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possible while requiring also P1!2 ¼ 1 for � ¼ 0 and A ¼
� (or � ¼ 0). Similarly, simultaneous double compensa-
tion can also be done in the � system. We note that even a
triple compensation—vs �, A, and �—can be achieved in
this manner; it is, however, more difficult to illustrate it.

Y system.—The method for suppression of unwanted
transitions is readily extended to more complex systems.
Here, we describe an extension of the V and� systems to a
Y-shaped system (Fig. 1, right). This system can arise from
a three-state ladder due to control tool imperfections, like a
two-state system is turned into a V or � system. An
example is found in coherent excitation of Rydberg states,
e.g., in a cloud of 87Rb atoms [18]. Additionally, the Y
system has the same coupling pattern as the well-known
tripod system, in which three lower states are coupled to
each other via two-photon transitions through a single
upper state; this system is very important in applications
using geometric phases [19].

The rotating-wave approximation Hamiltonian of the Y
system reads

HYðtÞ ¼ HVðtÞ � ð@=2Þ��00

þ ð@=2Þ½�01ðtÞei�01�01 þ H:c:�; (6)

where HVðtÞ is the Hamiltonian (1) of the V system.
The Rabi frequency �01ðtÞ of the additional transition

j0i $ j1i, with phase �01 (which provides an additional
control parameter), should share the same time dependence
fðtÞ as the other two Rabi frequencies. In addition to the
mixing angle � in the V system, we introduce a second
mixing angle �: �01ðtÞ ¼ �sin�fðtÞ, �12ðtÞ ¼
�cos� cos�fðtÞ, and �13ðtÞ ¼ �cos� sin�fðtÞ, where

now �fðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�01ðtÞ2 þ�12ðtÞ2 þ�13ðtÞ2

p
. Hereafter,

we take � ¼ �=4, i.e., �01ðtÞ2 ¼ �12ðtÞ2 þ�13ðtÞ2. The
couplings in the Y system in each interaction step can be
caused by the simultaneous application of pairs of pulses
from two lasers, one on the lower transition j0i ! j1i and
another (elliptically polarized) on the upper V system
j3i  j1i ! j2i. The objective now is to transfer the popu-
lation from state j0i to state j2i along the path j0i ! j1i !
j2i while suppressing the transition path j1i ! j3i.
Mathematically, this requires jU20j2 ¼ 1.
As in the V system, because the couplings share the

same time dependence fðtÞ and the Y system is on a two-
photon resonance, it can be transformed by the Morris-
Shore transformation into a set of two decoupled states and
a two-state system. This allows us to obtain an exact
analytic expression for the propagator in the original basis
in terms of the Cayley-Klein parameters of the two-state
system in the Morris-Shore basis, similar to the one of
Eq. (3) [10,15–17]. The propagator U for the kth pulse pair

depends now on three phases: �k ¼ ð�ðkÞ01 ; �ðkÞ12 ; �ðkÞ13 Þ.
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FIG. 3 (color online). Transition probability P1!2 in a V
system. Upper frames: P1!2 vs the mixing angle � and the
rms pulse area A for a single resonant pulse (upper left) and a
composite sequence of three resonant pulses (upper right) with
phases �12 ¼ ð0; 2=3; 0Þ� and �13 ¼ ð0; 1; 1=3Þ�. Lower
frames: P1!2 vs the mixing angle � and the single-photon
detuning � for a single rectangular pulse of duration T and
rms area A ¼ � (lower left) and a composite sequence of three
rectangular pulses, each with duration T and rms area � and
phases �12 ¼ ð0; 1=3; 0Þ� and �13 ¼ ð0; 2=3; 0Þ� (lower right).
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FIG. 2 (color online). Transition probabilitiesP1!2 (solid lines)
andP1!3 (dashed lines) vs themixing angle� for a single resonant
pulse with rms area A ¼ � and for composite sequences of n
pulses (eachwith rms area�). Upper frame:V systemwith phases
�12 ¼ ð0; 2=3; 0Þ� and �13 ¼ ð0; 1; 1=3Þ� for three pulses
and �12¼ð0;1:411;0:249;�0:432;�0:935Þ� and �13¼
ð0;0:454;�0:632;0:14;�0:514Þ� for five pulses. Lower
frame: � system with phases �12 ¼ ð0; 2=3; 1=6Þ� and �23 ¼
ð0;�2=3; 1=6Þ� for three pulses and �12 ¼ ð0;�4;�1;
7;�4Þ�=10 and �23 ¼ ð0; 4; 3;�5; 0Þ�=10 for five pulses. The
(3e) curves in both frames show the transition probabilities for
three pulses when their phases experience random errors with a
Gaussian distribution with a standard deviation of 0:05�.
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Several conditions must be satisfied to achieve the
desired transfer j0i ! j2i. When the mixing angle is
� ¼ 0 (�13 ¼ 0), this is achieved by a pair of simultaneous

resonant pulses with rms area A ¼ Rtf
ti �fðtÞdt ¼ 2� [16].

As in the V system, unknown deviations in the interaction
parameters can be compensated by a composite sequence
of pulses. The propagator of a sequence of n pulse pairs is
given by Eq. (5). Composite sequences are constructed in

the same manner as for the V system: We expand P0!2 ¼
jUðnÞ20 j2 in a Taylor series vs the relevant parameters and

annul as many terms (in ascending order) as possible.
Compensation vs the mixing angle � is demonstrated in
Fig. 4 for sequences of two and six pulse pairs; its relative
stability to random time delays in the j0i ! j1i coupling is
also shown there. Simultaneous compensation of devia-
tions in both the mixing angle � and the rms pulse area A is
shown in Fig. 5 (upper frames) and in the mixing angle �
and the single-photon detuning � in Fig. 5 (lower frames)
for sequences of three pulse pairs.

Discussion and conclusion.—Besides the proposed com-
posite pulse technique, we note that other methods for
suppressing unwanted transitions exist, e.g., dynamical
decoupling for suppression of decoherence [20], which
has been shown to be equivalent to the quantum Zeno
effect [21] and extended to dynamically error-corrected
gates [22,23]. Our work differs from this approach in
important details. ‘‘Bang-bang’’ decoupling keeps the sys-
tem in a desired subspace by ‘‘strongly’’ coupling the qubit
to the environment [21], i.e., by effectively projecting the
total system onto the desired subspace. On the contrary, our
approach relies on destructive interference of errors and it
allows us to cancel unwanted couplings of the same order

of magnitude as the desired ones while dynamically error-
corrected gates cancel perturbative errors.
We also note that examples of selective excitation by

pulse trains have been demonstrated before [24–28]. The
concept of our technique differs substantially from these
because it allows for selective excitation to a desired state
and suppression of excitation to unwanted states when they
are degenerate; i.e., we can eliminate resonantly coupled
states, even without knowing how large the coupling to
them is. The main reason for this advantage is that our
technique relies on the differences in the phases of the
unknown target and unwanted couplings.
The proposed technique is a simple and efficient method

for robust population transfer and suppression of unwanted
transition channels in multistate quantum systems. We
have demonstrated it for three-state V and � systems and
four-state Y systems, but it can readily be adapted to more
complex systems. Unwanted transition channels may be
merely unavoidable (e.g., due to off-resonant couplings) or
can be activated, for instance, by deviations in light polar-
ization or geometric reasons. By suitably choosing the
phases of the constituent pulses, the unwanted transitions
can be suppressed with very high fidelity while compensa-
tion of deviations in laser polarizations, intensities, and
detunings can be done simultaneously. The accuracy, the
flexibility, and the simplicity of the proposed technique
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FIG. 4 (color online). Transition probabilities P0!2 (solid
lines) and P0!3 (dashed lines) in a Y system vs the mixing angle
� for a single pulse pair with rms area 2� and for composite
sequences of two and six pulse pairs (each with rms area
A ¼ �), with phases �01 ¼ �12 ¼ ð0; 0Þ and �13 ¼ ð0; 1Þ�
for two pairs and �01¼ð0;0;�0:181;�0:181;�0:033;
�0:033Þ�, �12¼ð0;0;�0:517;�0:517;�0:398;�0:398Þ�, and
�13¼ð0;0:562;0:026;�1:554;0:393;0:238Þ� for six pairs. The
(2d) curve shows the transition probabilities for the two pulse
pairs when there is a random time delay of the j0i ! j1i coupling,
i.e., �01ðtÞ ! �01ðtþ �Þ, where � has a Gaussian distribution
with a standard deviation of 0:1T, where AðTÞ ¼ �.
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FIG. 5 (color online). Transition probability P0!2 for a Y
system. Upper frames: P0!2 vs the mixing angle � and the
rms pulse area A for a single resonant pulse pair (upper left)
and a composite sequence of three resonant pulse pairs (upper
right), with phases �01¼ð0;1;�1=3Þ�, �12 ¼ ð0;�2=3; 1=3Þ�,
and �13 ¼ ð0; 1; 0Þ�. Lower frames: P0!2 vs the mixing angle �
and the single-photon detuning � for a single pair of rectangular
pulses with rms area A ¼ 2� (lower left) and a composite
sequence of three pairs of rectangular pulses, each with rms
area 2� and phases �01 ¼ �12 ¼ ð0; 2=3; 0Þ� and �13 ¼
ð0; 1; 0Þ�.
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make it a potentially important tool in applications requir-
ing high control fidelity, such as quantum information
processing and quantum optics.
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