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We exhaust all exact self-consistent solutions of complex-valued fermionic condensates in the (1þ 1)-

dimensional Bogoliubov–de Gennes and chiral Gross-Neveu systems under uniform boundary conditions.

We obtain n complex (twisted) kinks, or gray solitons, with 2n parameters corresponding to their positions

and phase shifts. Each soliton can be placed at an arbitrary position while the self-consistency requires its

phase shift to be quantized by �=N for N flavors.
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Introduction.—The search for inhomogeneous self-
consistent fermionic condensates including states such as
the Fulde-Ferrell [1] and Larkin-Ovchinnikov [2] states
having phase and amplitude modulations, respectively, in
superconductors has attracted considerable attentions for
more than half a century since theoretical predictions were
made about their existence. While amplitude modulations
are well studied in conducting polymers [3–7], the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state is theoretically
shown to be a ground state of superconductors under a
magnetic field [8]. Recently, the FFLO state has also been
discussed in the context of an ultracold atomic Fermi
gas [9,10]. In general, inhomogeneous self-consistent
fermionic condensates with a gap function and fermionic
excitations can be treated simultaneously using the
Bogoliubov–de Gennes (BdG) and gap equations [11].
The gap functions are real and complex for conducting
polymers [12] and superconductors, respectively. In the
quantum field theory, these systems correspond to the
Gross-Neveu (GN) model [13] and the Nambu–Jona-
Lasinio (or chiral GN) model [14], which were proposed
as models of dynamical chiral symmetry breaking in 1þ 1
or 2þ 1 dimensions. Therefore, BdG and (chiral) GN
systems have been studied and developed together from
the viewpoint of both condensed matter physics and high
energy physics (see Ref. [15] for a review). For instance,
fermion number fractionization is one of the topics that
has been studied from this viewpoint [16,17]. Recently, it
has been shown that the solutions in 1þ 1 dimensions can
be promoted to 3þ 1 dimensions [18,19], thereby leading
to extensive study of the modulated phases of these sys-
tems in terms of quantum chromodynamics (QCD) [20].

Inhomogeneous self-consistent solutions are often
studied numerically because analytic solutions are gener-
ally difficult to obtain. However, several analytic solutions
are available in the case of the real-valued condensates in
1þ 1 dimensions, which describe the conducting poly-
mers and the real GN model. Under uniform boundary

conditions at spatial infinities, a real kink was constructed
by Dashen et al. [21] by using the inverse scattering
method, and later, it was reconstructed in polyacetylene
[22] in the continuum limit of the lattice model [23].
Subsequently, a bound state of a kink and an antikink,
which is called a polaron, was constructed in polyacetylene
[24,25], for which achieving self-consistency in the system
requires the distance between the kink and antikink to be
fixed. Furthermore, three kinks (kink and polaron placed at
arbitrary positions) [26,27] and more general solutions [28]
were obtained. The attractive interaction between two
polarons was also investigated [29]. For a periodic bound-
ary condition, the existence of real kink crystals (the
Larkin-Ovchinnikov state) has been known for a long
time [3–7].
On the other hand, when compared with real conden-

sates, only a few self-consistent solutions have thus far
been obtained for complex condensates such as a com-
plex (or twisted) kink or a gray soliton [30] and their
crystals [31,32]. In these complex-valued crystals, both
the amplitude and phase are modulated (the FFLO state),
and this modulated phase has important applications in
both superconductors and QCD, such as in the phase
diagram of the chiral GN model [33]. An attempt to
construct more general solutions was made [34,35] by
using a technique of integrable systems known as the
nonlinear Schrödinger or Ablowitz-Kaup-Newell-Segur
hierarchy [36].
In this Letter, we exhaust all exact self-consistent solu-

tions of complex condensates under uniform boundary
conditions, and we find that they describe multiple twisted
kinks. Unlike polarons in real condensates, where the
distance between the kink and antikink is fixed, the situ-
ation is drastically simplified in our multiple twisted-kink
solutions; we determine the filling rate of fermions for
bound states of each kink, and we find that each kink can
be placed at any position and has any phase shift quantized
by �=N with the number of flavors N.

PRL 110, 131601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

29 MARCH 2013

0031-9007=13=110(13)=131601(5) 131601-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.131601


Fundamental equations.—The fundamental equations
which we consider in this Letter appear in both condensed
matter and high energy physics. In the condensed matter
language, they are the one-dimensional BdG system with
the Andreev approximation consisting of the BdG equation
for right movers (BdGR)

�i@x �ðxÞ
�ðxÞ� i@x

 !
uR

vR

 !
¼ �

uR

vR

 !
; (1)

the BdG equation for left movers (BdGL)

i@x �ðxÞ
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 !
¼ �

uL

vL

 !
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and the gap equation as a self-consistent condition

��ðxÞ
g

¼ X
occupied states

ðuRv�
R þ uLv

�
LÞ: (3)

For a derivation from the second quantized Hamiltonian,
see, e.g., Ref. [8].

In high energy physics, this problem is equivalent to the
chiral GN model with N flavors

L ¼ �c i6@c þ g2

2N
½ð �c c Þ2 þ ð �c i�5c Þ2�; (4)

with c ðxÞ ¼ ðc 1ðxÞ; � � � ; c NðxÞÞT [13,14,21,30].
Introducing the auxiliary fields �ðxÞ and �ðxÞ, this can
be rewritten as

L ¼ �c i6@c � g �c ð�þ i��5Þc � N

2
ð�2 þ �2Þ: (5)

Eliminating �ðxÞ and �ðxÞ by their equations of motion,
� ¼ �ðg=NÞ �c c and � ¼ �ðg=NÞ �c i�5c , takes us back
to Eq. (4). Instead, we integrate out c ðxÞ to obtain
Z ¼ R

D�D� expðiSeffÞ with
Seff ¼Nf�i lnDet½i6@�gð�þ i��5Þ�� 1

2ð�2þ�2Þg: (6)

Defining �ðxÞ ¼ �ðxÞ þ i�ðxÞ, the gap equation is
obtained in the large-N limit as the stationary condition
for ��ðxÞ

�ðxÞ ¼ �4i
�

���ðxÞ lnDet½i6@� gð�þ i��5Þ�: (7)

In the Hartree-Fock formalism, we considerHRc R ¼ �c R

and HLc L ¼ �c L with single-particle Hamiltonians
HR ¼ �i�5@x þ �0ð�þ i��5Þ and HL ¼ þi�5@x þ
�0ð�þ i��5Þ, reducing to the BdG equations Eqs. (1) and
(2) with �0 ¼ �1, �1 ¼ �i�2 and �5 ¼ �3, while the
consistency condition � ¼ �ðg=NÞðh �c c i þ ih �c i�5c iÞ
reduces to Eq. (3).

Result from the inverse scattering theory.—First, we
briefly summarize the mathematical expressions of the
n-soliton solution and its eigenstates of the self-defocusing
Zakharov-Shabat eigenvalue problem [37]
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(8)

obtained by the inverse scattering method [38]. The
detailed derivation is provided in the Supplemental
Material [39].
Let us assume that the gap function obeys the following

asymptotically uniform boundary condition:

j�ðxÞj ! mð>0Þ; x ! �1: (9)

Subsequently, we parametrize the energy and wave number
of quasiparticles using the uniformizing variable s defined by

�ðsÞ ¼ m

2
ðsþ s�1Þ; kðsÞ ¼ m

2
ðs� s�1Þ: (10)

We can easily verify that the dispersion relation �2¼k2þm2

holds for an arbitrary complex number s. Eigenstates corre-
sponding to s on the real axis are scattering states,while those
on the unit circle are bound states. Since s and s� on the unit
circle correspond to the same bound state, it is sufficient to
consider the unit circle in the upper half planewhenwe count
the number of bound states (see Fig. 1).
Let us consider the gap function�ðxÞwhich has n bound

states and acts as a reflectionless potential for scattering
states, i.e., the n-soliton solution. By writing the s values of
the bound states as sj ¼ ei�j where j ¼ 1; . . . ; n with 0<

�j < �, the eigenenergy and the complex wave number

can be rewritten as

�j :¼�ikðsjÞ ¼m sin�j; �j :¼ �ðsjÞ ¼mcos�j; (11)

respectively. According to the inverse scattering theory,
�1; . . . ; �n are all different from each other and there is no
degeneracy. We further introduce the following notation:

ejðxÞ ¼ ffiffiffiffiffi
�j

p
e�jðx�xjÞ ðj ¼ 1; . . . ; nÞ: (12)

Here, the real constant xj represents the position of the jth

soliton up to an additive constant when solitons are well
separated from each other, as shown below. Furthermore, we
define the functions f1ðxÞ; . . . ; fnðxÞ as solutions of the
following linear equation:

1−1
Re s

Im s

scattering states ( 0) scattering states ( 0)

bound state

FIG. 1. Scattering and bound states in s plane. Scattering states
with positive (negative) energy exist on the real and positive
(negative) axis. Bound states exist on the unit circle, and s and s�
represent the same bound state.
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fj þ ej � 2i

m

Xn
l¼1

ejelfl

s�1
j � sl

¼ 0 ðj ¼ 1; . . . ; nÞ: (13)

Here, the argument x is abbreviated.
By using the above notations, the n-soliton solution can

be expressed as

�ðxÞ ¼ mþ 2i
Xn
j¼1

s�1
j ejðxÞfjðxÞ: (14)

The complex-valued n-soliton solution has 2n parameters
s1; . . . ; sn, x1; . . . ; xn, and this number of parameters is
exactly twice that of the real-valued soliton solution.
This �ðxÞ has the following asymptotic form:

�ðxÞ !
�
m ðx ! �1Þ
me�2ið�1þ�2þ���þ�nÞ ðx ! þ1Þ: (15)

If the solitons are sufficiently separated from each other,
the phase shift brought about by the jth soliton is s�2

j ¼
e�2i�j , and the position of the jth soliton Xj is given by

Xj ¼ xj þ 1

�j

X
ls:t:xl<xj

log

��������sin
�lþ�j

2

sin
�l��j

2

��������: (16)

Figure 2 shows an example of the three-soliton solution.
The reduction to the real-valued soliton solution is

obtained as follows. When the number of solitons is even
(n ¼ 2n0), the relations

s2j�1 ¼ �s�2j; x2j�1 ¼ x2j ðj ¼ 1; . . . ; n0Þ (17)

yield real-valued solutions. When the number of solitons is

odd (n ¼ 2n0 þ 1), we need to consider the term s2n0þ1 ¼
ei�=2 in addition to Eq. (17) while x2n0þ1 remains arbitrary.
By this reduction, we obtain f2j�1ðxÞ ¼ f2jðxÞ� and

f2n0þ1ðxÞ ¼ f2n0þ1ðxÞ�, and the imaginary part of Eq. (14)
vanishes.

The bound state with s ¼ sjð$ � ¼ m cos�jÞ is

given by

ujðxÞ
vjðxÞ

 !
¼ fjðxÞ

sjfjðxÞ�
 !

ðj ¼ 1; . . . ; nÞ: (18)

We can show that this state is already normalized, i.e.,R
dxðjujj2 þ jvjj2Þ ¼ 1 holds.

Finally, let s be real. Then, the scattering states are
given by

uðx; sÞ
vðx; sÞ

 !
¼ eikðsÞx

�
1

s�1

 !
þ 2i

m

Xn
j¼1

ejðxÞ
sj � s

fjðxÞ
sjfjðxÞ�

 !�
;

(19)

which are obviously reflectionless as observed from the
expression. The amplitudes of these solutions at x ¼ �1
are

juð�1; sÞj2 þ jvð�1; sÞj2 ¼ 1þ s�2: (20)

Occupation states and gap equation.—From this point
onwards, we consider the occupation states of the BdG
system withN internal degrees of freedom, or equivalently,
the chiral GN model with N flavors. We first note that the
following relation exists between the solutions of the right
and left movers:

ð�; uðxÞ; vðxÞÞ is a solution of BdGR:

$ ð���;�vðxÞ�; uðxÞ�Þ is a solution of BdGL: (21)

Thus, we can rewrite all quasiparticle wave functions of
the left movers using those of the right movers. In the light
of examining low-energy excited states of condensed mat-
ter systems, we consider the configurations in which all the
negative-energy scattering states are filled by fermions and
positive-energy states are completely vacant. As for bound
states, we label the bound states of BdGR as (uj;R, vj;R)

where j ¼ 1; . . . ; n, and we also label the corresponding
bound states of BdGL with the energy of the opposite sign
related by Eq. (21) as (uj;L, vj;L). These states are assumed

to be filled partially, and we write the occupation number
as NjR and NjL, as schematically shown in Fig. 3. The gap

equation subsequently becomes

��ðxÞ
g

¼X
s:s:
�<0

NuRv
�
Rþ

X
s:s:
�<0

NuLv
�
Lþ

X
b:s:

NjRuj;Rv
�
j;R

þX
b:s:

NjLuj;Lv
�
j;L

¼N

�X
s:s:
�<0

uRv
�
R�

X
s:s:
�>0

uRv
�
R

�
þX

b:s:

ðNjR�NjLÞuj;Rv�
j;R:

(22)

Here, the notation s.s. (b.s.) denotes the scattering (bound)
states, and the relation of Eq. (21) is used to obtain the
second equality in the above equation. Defining the filling
rate by

20 10 0 10 20
x

0.2
0.4
0.6
0.8
1.0

x 2

20 10 10 20
x

arg x

FIG. 2 (color online). Example of a three-kink solution. Here
the parameters are m ¼ 1, s1 ¼ eð5=12Þ�i, s2 ¼ eð2=3Þ�i, s3 ¼
eð3=4Þ�i, x1 ¼ �10, x2 ¼ 10, and x3 ¼ 0. The positions of the
solitons [Eq. (16)] are calculated as X1 ¼ �10, X2 ¼ 13:18, and
X3 ¼ 0:93.
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�j :¼
NjR � NjL

N
; �1 � �j � 1 ðj ¼ 1; . . . ; nÞ;

(23)

the above equation can be rewritten as follows:

� �ðxÞ
~g

¼ X
s:s:
�<0

uRv
�
R �X

s:s:
�>0

uRv
�
R þX

b:s:

�juj;Rv
�
j;R (24)

with ~g :¼ Ng. It is to be noted that the sum of positive-
energy scattering states in Eq. (24) has a negative sign
because of the Eq. (21) relation, and it is equivalent to the
stationary condition of the action in the GN model, as
given in Ref. [30]. Thus, we can again confirm the equiva-
lence of the problems between the BdG and GN systems.

Henceforth, we always use the quantities of the BdGR

system, and we omit the subscript R. Considering the limit
L ! 1, where L denotes the system size, we replace the
sum of the scattering states of the gap equation [Eq. (24)]
by the corresponding integral. After renormalization of
the coupling constant

1

~g
¼ 1

2�

Z 1

�1
dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ; (25)

and subtracting the logarithmically divergent terms from
both sides, we obtain the following expression:

0 ¼ X
b:s:

�jujðxÞvjðxÞ� þ
X
�_0

Z 1

�1
dk

2�

 
�ðxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

� ðsgn�Þ ukðxÞvkðxÞ�
juk;1j2 þ jvk;1j2

!
; (26)

where we have written the scattering states with the wave
number k as ðukðxÞ; vkðxÞÞ, and their amplitudes at infinity
as (uk;1, vk;1). We note that ðukðxÞ; vkðxÞÞ for a positive

energy and that for a negative energy are different from

each other, though we use the same notation. It is conve-
nient to rewrite the above integral in terms of the unifor-
mizing variable s introduced in Eq. (10). Using the relationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ m

2 jsjð1þ s�2Þ, we obtain

0 ¼ X
b:s:

�jujðxÞvjðxÞ� þ
�Z 0

�1
�
Z 1

0

�
ds

2�

�
�
mð1þ s�2Þuðx; sÞvðx; sÞ�
2ðjuð1; sÞj2 þ jvð1; sÞj2Þ�

�ðxÞ
2s

�
: (27)

Here, we have written the scattering states labeled by s as
ðuðx; sÞ; vðx; sÞÞ.
Self-consistent condition for the n-soliton solution.—We

first present our main result in the following theorem, and
then provide the proof.
Theorem:—Let �ðxÞ be an n-soliton solution given by

Eq. (14). The gap equation [Eq. (27)] holds if and only if
the filling rate �j satisfies

�j ¼
2�j � �

�
ðj ¼ 1; . . . ; nÞ: (28)

Here, we remark on certain aspects of this theorem:
(1) This theorem provides all self-consistent solutions
under the uniform boundary condition [Eq. (9)], because
�ðxÞ needs to be a reflectionless potential in order for the
gap equation to hold [21,28,30], and n-soliton solutions
cover all reflectionless potentials with n bound states.
(2) The filling rate �j for the jth bound state only depends

on the phase shift of the jth soliton, and it is not affected by
other soliton parameters. Thus, the self-consistent condi-
tion is decoupled for each bound state (or each soliton).
(3) The parameter xj, where j ¼ 1; . . . ; n, which represents

the position of the soliton up to an additive constant
[Eq. (16)], is arbitrary and is not related to the self-
consistency. This contrasts with the case of real-valued
condensates. Because they must be real, the distance
between two solitons must be fixed to a specific value,
such as in the case of the polarons in polyacetylene [24–26]
and the topologically trivial soliton in the GN model [27].
(4) For the N-flavor system, the possible values of the
filling rate are given by � ¼ N�1

N ; N�2
N ; . . . ;� N�1

N .

Correspondingly, the possible phase shift of each soliton
is also discretized. For example, only the trivial value
� ¼ 0 is allowed for N ¼ 1, which corresponds to the
real kink 2� ¼ �. When N ¼ 2, the values � ¼ � 1

2 , 0,
1
2

are allowed, which correspond to � ¼ �
4 ,

�
2 ,

3�
4 . The cases

N ¼ 1 and 2 correspond to s-wave superconductors and
polyacetylene, respectively. The cases of N are also
obtained as a dimensional reduction of nonrelativistic field
theories in 3þ 1 dimensions, for which N is the number of
patches of the Fermi surface [19]. On the other hand, any
soliton solution can be self-consistent when N ¼ 1.
Proof.—Upon substituting Eqs. (14), (19), and (20), into

the integrand of the gap equation [Eq. (27)], the terms
1þ s�2 and juð�1; sÞj2 þ jvð�1; sÞj2 in the first term
in the bracket undergo cancellation, thereby yielding

= − 1

= 2

= 3

= 1

= − 2

= − 3

= 0

= m

= −m

N1R

N2R

N3R

N1L

N2L

N3L

N statesN states
Left moversRight movers

...

...
...

...

FIG. 3. Diagram of the occupation states considered in this
Letter. In this example figure, the number of flavors is N ¼ 6
and the number of solitons is n ¼ 3. The filling rates defined by
Eq. (23) are given by �1 ¼ �1=6, �2 ¼ 1=3, and �3 ¼ 1=2.
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m

2
uðx; sÞvðx; sÞ� ��ðxÞ

2s

¼ 2
X
j

s�1
j ejfj

sin�j

js� sjj2
� 4i

m

X
j;l

ejfjelfl
1� sjsl

sin�j

js� sjj2

¼ �2
X
j

s�1
j f2j

sin�j

js� sjj2
: (29)

Here, Eq. (13) is used to obtain the last line. Using
the formula

R js� sjj�2ds¼ ðsin�jÞ�1tan�1½ðs� cos�jÞ=
ðsin�jÞ�, we can perform the integration and obtain�Z 0

�1
�
Z 1

0

�
ds

2�

�
m

2
uðx; sÞvðx; sÞ� ��ðxÞ

2s

�

¼ �X
j

s�1
j f2j

2�j � �

�
: (30)

Recalling that the bound states are given by Eq. (18), we
finally obtain

½rhs of Eq: ð27Þ� ¼ X
j

s�1
j f2j

�
vj �

2�j � �

�

�
: (31)

Since the functions f1ðxÞ2; . . . ; fnðxÞ2 are linearly indepen-
dent of each other, the theorem holds. j

Summary.—In summary, we have constructed all the
exact self-consistent solutions of complex condensates
under uniform boundary conditions. Our multiple
n-twisted kink solution contains 2n parameters, and each
kink has one bound state. Each kink can be placed at any
position, while the self-consistency of the system requires
the phase shift of each kink to be quantized by �=N with
the number of flavors N. Our solution describes multiple
gray solitons in ultracold atomic fermion gases, and our
predictions require experimental verification. The dynam-
ics and scattering of these solitons should be studied as a
future research topic. Further research also needs to be
conducted on the construction of self-consistent solutions
under nonuniform boundary conditions.
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