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We study the behavior of n-point functions of the primordial curvature perturbations, assuming our

observed Universe is only a subset of a larger space with statistically homogeneous and isotropic

perturbations. If the larger space has arbitrary n-point functions in a family of local type non-Gaussian

statistics, sufficiently biased smaller volumes will have statistics from a ‘‘natural’’ version of that family

with moments that are weakly non-Gaussian and ordered, regardless of the statistics of the original field.

We also describe the effect of this bias on the shape of the bispectrum.

DOI: 10.1103/PhysRevLett.110.131301 PACS numbers: 98.80.�k

Measurements of the primordial density fluctuations are
the primary tool to test the paradigm of inflationary cos-
mology and to distinguish between the many proposed
particle physics scenarios for inflation. As our ability to
test the statistics beyond the power spectrum, collectively
called non-Gaussianity, becomes more advanced, new que-
stions arise: What is the best way to test non-Gaussianity?
What measurements would point definitively to particular
models of inflation? So far the proposed approaches to
address these questions rely either on a particle physics
notion of naturalness for non-Gaussianity, either for the
inflaton field [1] or for the fluctuations [2], or on mode
expansions to try to capture any non-Gaussianity that is
observationally accessible [3].

Here, we point out a distinct and complementary way of
thinking about naturalness. We suppose only that the
Universe is considerably larger than what we see (which
is the natural outcome in many inflation models) and that
there exists a homogeneous and isotropic spectrum of
primordial fluctuations in the gravitational field on all
scales in the entire volume. If the field is non-Gaussian,
statistics in any given spatial subset may be biased in
comparison to the global statistics due to coupling ofmodes
in the subset to long-wavelength background modes. The
relevance of this effect increases as the subvolume size
decreases because there are more long-wavelength modes.
In smaller subvolumes, local statistics are typically more
biased, and vary more from region to region. In the case of
exactly Gaussian statistics, there is no coupling to long-
wavelength modes and the only effect of biasing is to shift
the locally determined mean of the fluctuations.

For a given choice of statistics in the large volume, we
can ask what statistics are typical to spatial subsets of the
size of our Universe. In this Letter, we will find a notion of
statistical naturalness for typical small volumes where a
family of well-behaved correlation functions is generated
from a parent volume with arbitrarily fine-tuned statistics
in the same family. Our results build on previous work on
the non-Gaussian halo bias from the standard local ansatz
[4] and in gNL type non-Gaussianity [5] and can be used to

more precisely characterize observable features of multi-
field inflation models [6]. This work is an extension of
ideas in Ref. [7] and is similar in spirit to recent results in
Refs. [8–11]. Related work on the effects of superhorizon
fluctuations in the context of large scale anomalies in the
cosmic microwave background includes Refs. [12,13]. We
illustrate our point with a simple first example, showing
that the local ansatz for non-Gaussianity, with an amplitude
that is weakly non-Gaussian and whose principal term is
quadratic in the underlying Gaussian, is statistically
natural.
Consider a large volume characterized by side length or

radius L and a smaller volume characterized by scale M.
Here, we will generally have in mind thatM is the scale of
our currently observable Universe and L the scale of the
entire Universe (which we assume to be finite). Note that L
may also just be the largest scale on which this prescription
for the fluctuations is trusted. It is also sometimes useful to
consider L to be the size of our observable Universe andM
the scale of an N-body simulation or of some local region
whose large scale structure we are interested in. We define
the curvature perturbation in each region as the fractional
shift to the scale factor a describing a background, homo-
geneous Friedmann-Robertson-Walker universe:

aðxÞ ¼ �aLð1þ ~�ðxÞÞ; x 2 VolL; (1)

¼ �aMð1þ �ðxÞÞ; x 2 VolM; (2)

where j~�j, j�j< 1 by definition. We define a maximum
wave number kmax from the smallest scale we smooth
over in defining the fluctuations. In the second line, we
have simply defined � in the subvolumeVolM as the fluctu-

ations around the local background �aM¼ �aLð1þh~�iMÞ,
where h~�iM is the average over VolM of the perturbations
defined with respect to the volume L. These quantities are
related by

1þ ~�ðxÞ ¼ ð1þ h~�iMÞð1þ �ðxÞÞ; x 2 VolM: (3)
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The power spectrum in either volume is defined in terms of
the two-point function, h�k1

�k2
i � ð2�Þ3�3ðk1 þ k2ÞPðkÞ,

and the dimensionless power spectrum is P ðkÞ � k3

2�2 PðkÞ.
Local Ansatz.—Consider a simple form of the local

ansatz where the curvature perturbation ~�ðxÞ is a local

nonlinear function of a Gaussian field ~�GðxÞ. In the large
volume, suppose the curvature perturbation is

~�ðxÞ ¼ ~N1
~�GðxÞþ 1

2!
~N2

~�GðxÞ2þ 1

3!
~N3

~�GðxÞ3þ��� ; (4)

where we implicitly shift the field so the mean h~�i through-
out the large volume is zero. The original local ansatz [14]

set ~N1 ¼ 1 and ~N2 ¼ 6
5
~fNL to define the nonlinearity

parameter ~fNL. We will take the ~Ni to be constants. The

real-space variance of the Gaussian field ~�G is

~�2
0 � h~�2Gi ¼

Z kmax

L�1

d3k

ð2�Þ3
~PGðkÞ; (5)

where ~PG is the power spectrum of ~�G. It will also be
useful to define ~�2

0l and ~�2
0s, with limits of integration

changed to (L�1, M�1) and (M�1, kmax), respectively.

Consider ~�ðxÞ for x 2 M, a subsample. Dividing
~�Gðx 2 MÞ into long and short-wavelength parts gives
~�M¼ ~�l;Mþ ~�s;M. Here, ~�l;M is the real-space field

smoothed over region M and is similar to h~�iM defined
above, up to the difference between the real space and
Fourier space tophat window functions. Following
Eq. (4), this gives the local background, a constant in
any particular subsample M,

~�l;M ¼ ~N1 ~�0Bþ 1

2!
~N2 ~�

2
0B

2 þ � � � ; (6)

where B � ~�Gl;M= ~�0 is a measure of bias in a given

subsample M. Similarly,

~�sðxÞ¼ N̂1
~�GsðxÞþ 1

2!
N̂2

~�2GsðxÞþ
1

3!
N̂3

~�3GsðxÞþ��� (7)

contains the short-wavelength fluctuations. However, the

coefficients N̂n now depend on the local background:

N̂nðBÞ ¼ ~Nnþ ~Nnþ1 ~�0Bþ 1

2!
~Nnþ2 ~�

2
0B

2þ��� : (8)

Then the curvature perturbation in any small volume,

�ðx2MÞ ¼ �GðxÞ þ 1

2!
N2�

2
GðxÞ þ

1

3!
N3�

3
GðxÞ þ � � � (9)

is related to ~� by � ¼ ~�s=ð1þ ~�l;MÞ, which follows from

Eq. (3) and the long- and short-wavelength split above;
here, we have set N1 � 1. Reading off the Gaussian part
of each expression, we have

�G ¼ N̂1

1þ ~�l;M
~�Gs; (10)

and consequently, the contribution PG to the power spec-
trum from the Gaussian part �G is different in the small

volume, PG ¼ ð N̂1

1þ~�l;M
Þ2 ~PG. We also define the real-space

variance of �G,

�2
0 � h�2Gi ¼

Z kmax

M�1

d3k

ð2�Þ3 PGðkÞ: (11)

The Nn coefficients can be expressed in terms of the N̂n

coefficients,

NnðBÞ ¼ ½1þ ~�l;MðBÞ�n�1

N̂n
1ðBÞ

N̂nðBÞ; (12)

which can be verified by comparing Eq. (7) with Eqs. (9)
and (10). The Nn, and hence, the locally averaged n-point
functions, will vary among subsamples due to variation
in the bias B, which is itself drawn from a Gaussian
distribution with variance hB2i ¼ ~�2

0l=~�
2
0 � 1. In the

limit M�1 ! kmax, hB2i ! 1.

The level of non-Gaussianity in ~� introduced by any one
of the ~Nn coefficients can be quantified by ~Nn ~�

n�1
0 . Using

Eqs. (10) and (12), it is easy to show that the corresponding
quantity Nn�

n�1
0 for the small volume is given by

�nðBÞ � Nn�
n�1
0 ¼ N̂�1

1 N̂n ~�
n�1
0s : (13)

The increase or decrease in the level of non-Gaussianity is

determined by the same factor of N̂�1
1 for all terms, up to

additional corrections in the N̂n, as expressed in Eq. (8). If

we truncate the series at two terms, where ~N2 ¼ 6
5
~fNL, we

find

fNL�0 ¼ ~fNL ~�0s

�
1þ 6

5
~fNL ~�0B

��1
: (14)

Generically, if the series in the large volume L was a good

Taylor expansion with ~Nnþ1
~�G < ~Nn, the coefficients in

volume M will be not too different from those in L. For
unbiased subsamples, where the long-wavelength modes
happen to average to zero, B ¼ 0 and the statistics of the
subsample are identical to those of the volume L.
The running of the parameters of the series with the

background bias B can also be expressed in differential
form, analogous to renormalization group equations. From

Eq. (8), we have ~��1
0 dN̂n=dB ¼ N̂nþ1, and from Eq. (6),

we have ~��1
0 d~�l=dB � ~��1

0 dN̂0=dB ¼ N̂1. One can show

from Eq. (13) that

d ln�n

dB
¼ �nþ1

�n

� �2: (15)

This equation is valid for any set of initial conditions �nð0Þ,
that is, for any set of coefficients ~Nn, although one
must take care when B ¼ 0 in cases where there is no
linear term in the large volume ( ~N1 ¼ 0), because in the
small volume, Eq. (9), we have normalized the linear
term to have a coefficient 1. Writing a similar differential
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equation for the dimensionless (connected) moments

Mn � h�ðxÞnic=h�ðxÞ2in=2 would avoid that problem and
be more complete, but it is also more notationally cumber-
some so we do not write it here.

Weakly Non-Gaussian Ansatz.—Let us now consider a
case where the series in the volume L is fine-tuned, with
some coefficients ~Nn unusually large or small. Consider
first the case where the ~Nn with p > n > 1 are zero in the
large volume L so that after the linear term the series starts
only at order p:

~�¼ ~�Gþ 1

p!
~Np

~�pGþ
1

ðpþ1Þ!
~Npþ1

~�pþ1
G þ��� ; p�3:

(16)

By ‘‘weakly non-Gaussian’’, we mean that the linear term

dominates, so 1
p!
~Np

~P ðp�1Þ=2
G �1. To ensure a simple beha-

vior of the highest moments, we also assume that the

nonzero terms become smaller by the same ratio ~r�
ð ~Nnþ1= ~NnÞ ~P 1=2

G �1, and that 1
p!

~Np
~P ðp�1Þ=2
G � ~rp�1. This

scenario gives a nearly Gaussian field in volume L whose
non-Gaussian moments have some unusual properties.

For n > p, the dimensionless moments ~Mn scale like
~Mn / ~rn�2. However, the moments with n � pþ 1 are

not necessarily ordered (e.g., ~Mn, ~Mnþ1 is possible).

Defining ~A � ~�2
0=

~PG, with ~A~r2 � 1, the moments with

n � p behave as ~Mn / ~rp ~Ap=2 for ðp; nÞ ¼ ðodd; oddÞ or
ðeven; evenÞ, and ~Mn / ~rp�1 ~Aðp�1Þ=2 for ðp;nÞ¼
ðeven;oddÞ or ðodd; evenÞ.

However, in subsamples the long-wavelength modes
will generate the missing lower order terms:

� ¼ �G þ 1

2!
N2�

2
G þ 1

3!
N3�

3
G þ � � � : (17)

With the restriction that the terms with n > p in the

large volume fall off according to ~r � 1, Nn	
~Np½1þ ~�lðBÞ�n�1ð~�0BÞp�n=ðp�nÞ! for p � n > 1, and

N1 � 1. Interestingly, the correlation functions h�ni are
not of order Nn�2

2 but are instead dominated by the con-
tribution from Nn�1.

For sufficiently biased subsamples, the series of dimen-
sionless moments can be written, for 2< n � p,

Mn / C½feffNL�0�n�2; (18)

where C / ~rp�1, and feffNL ¼ 1þ~�lðBÞ
~�0B

. That is, the level of

non-Gaussianity and scaling of the moments in sufficiently
biased subsamples is determined not by the original
parameters ~Nn, but by the local background B. (In

contrast, for n > p, Mn / ~Nn�1�
ðn�2Þ=2
0 .) Because

feffNL�0 ’ �0=~�0B, we have Mnþ1=Mn � 1
B ðlnðkmaxMÞ

lnðkmaxLÞ Þ1=2.
Consequently, for sufficiently biased subsamples, the
n � p moments will fall off as n increases. We will see
that this tends to be the case for subsamples containing

fewer subhorizon modes than the number of superhorizon
background modes. Note also that � is still only weakly
non-Gaussian.
Strongly Non-Gaussian Ansatz.—Next, consider a case

where the statistics in the volume L are very non-Gaussian:

~� ¼ 1

p!
~Np

~�pGþ 1

ðpþ1Þ!
~Npþ1

~�pþ1
G þ��� ; p>1; (19)

where again we assume for simplicity that the first term in

the series dominates. In this case, the moments ~Mn are all
of Oð1Þ. In the smaller volume M, the entire local ansatz
series is regenerated, but with

Nn 	 ½1þ ~�l;MðBÞ�n�1

½ ~Npð~�0BÞp�n�1

½ðp� 1Þ!�n
ðp� nÞ! ; n � p: (20)

Now the linear term is regenerated like all the other terms,
and the correlation functions h�ni are of order Nn�2

2 ,

Mn / ½feffNL�0�n�2; 2< n � p; (21)

where feffNL ¼ 1þ~�l;MðBÞ
2 ~Npð~�0BÞp . Although there is no longer an

additional small factor suppressing the moments, as in
Eq. (18), the scaling of the moments is otherwise the
same as described above (for n > p, the moments again
fall off with the original scale ~r). For biased enough sub-
samples, the moments can be small and fall off rapidly;
even a strongly non-Gaussian model in the large volume
generates subsamples that are weakly non-Gaussian.
An easy way to see that Gaussian statistics are recovered

on small scales is to consider the simple case ~� ¼ ~�2G.

Breaking ~�G into long- and short-wavelength modes, we

have ~� ¼ ~�2Gl þ 2~�Gl
~�Gs þ ~�2Gs. If the number of back-

ground modes is much greater than the number of short-
wavelength modes, lnðL=MÞ 
 lnðM=RÞ, then as long as
~�Gl;M � h~�2Gli1=2, the linear term will be much larger than

the quadratic term. In general, when the scale of the
subsamples is small enough, typical subsamples will be
sufficiently biased to regenerate the familiar local ansatz.
(In the case of a scale-dependent power spectrum where
longer wavelength modes have greater power ðns < 1Þ,
the bias B � ~�Gl;M= ~�0 from the background increases

more rapidly as the subsample sizeM is decreased, causing
the linear term to be boosted in size and the field � to be
more Gaussian.)

Behavior of n-Point Function Shapes.—In specifying ~� ,
we determine shapes for the n-point functions on all scales.
In subsamples, these shapes are still present, but (as in the
two examples considered here) can be dominated by soft
limits from higher n-point functions induced by the back-
ground. One might think that arbitrarily nonlinear terms in
~� could give arbitrary k-dependence to the n-point func-
tions. Then the usual local-shape n-point functions could
be recovered in sufficiently biased small subsamples from
very different shapes in the large volume. In the highly
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non-Gaussian case, Eq. (19), the n-point functions may
involve many loops (momentum space integrals), whereas
in small subsamples, the lower order terms allow the
dominant shape to come from tree diagrams. Even for
the fine-tuned nearly Gaussian case, Eq. (16), it is possible
for n-point functions to be dominated by contributions with
many loop integrals, if we remove the earlier requirement
that higher order terms fall off by ~r � 1.

To address this possibility, let us consider the p-loop
contributions to the two-point function from a given higher

order term in the series: hð ~Npþ1
~�pþ1
G Þk1

ð ~Npþ1
~�pþ1
G Þk2

i 2
h~�k1

~�k2
i. This contribution can be expressed in the form

~Pp-loop
� /

Z Yp
i¼1

d3pi

1

jk�ppj3
�Yp�1

i¼1

1

jpiþ1�pij3
�
1

p3
1

: (22)

We find that after evaluating m such integrals starting from
the right, with a momentum cutoff L�1 for all factors in
denominators and taking the limit L�1 � pi � kmax, an

additional factor of lnmðpmþ1LÞ appears, giving ~Pp-loop
� /

k�3lnpðkLÞ. Additional terms are also introduced, but
either have weaker momentum dependence or can be dis-
carded in the limit pi=kmax � 1. The appearance of the
scale L in these expressions should not be interpreted as
measurability of L, since its value is completely degenerate
with the amplitude of the power spectrum, the spectral
index, and analogous quantities for higher order correlation
functions (see, e.g., Ref. [15]).

This analysis can be generalized to the three-point and
higher n-point functions; an n-loop contribution to the
bispectrum will involve terms of the form [16]

1

k31k
3
2

lnm1ðk1LÞlnm2ðk2LÞlnm3ðminðk1;k2ÞLÞþperms:; (23)

where
P

mi ¼ n andm1;2;3 are the number of loops coming

from contractions between different pairs among three
terms in the series contributing to the bispectrum. In the
squeezed limit, k1!0 and k2 ’ k3, only terms withm1 ¼ 0
will contribute, so the squeezed limit will still be charac-
terized by the usual k�3

1 dependence. We conclude that a

local ansatz with arbitrarily fine-tuned coefficients ~Nn can
contribute additional logarithmic k-dependence to n-point
functions, but the behavior in the squeezed limit remains
unchanged.

The question of shape is also more complex for higher
n-point functions in that there are more tree level shapes.
For the local model, there are two trispectrum shapes
typically discussed: Tg ¼ gNLPGðk1ÞPGðk2ÞPGðk3Þ and

T� ¼ �NLPGðk1ÞPGðk2ÞPGðjk1 þ k3jÞ, with sums over
permutations; in our case, �NL ¼ ð65 fNLÞ2. For the nearly

Gaussian ansatz, Eq. (16), cubic and quadratic terms will

be regenerated, with gNL=f
2
NL � ~r�ðp�1Þ 
 1, so the Tg

shape will dominate the T� shape in sufficiently biased
subsamples. In the large volume, this is also true; the

leading term h~�G;k1
~�G;k2

~�G;k3
ð ~Np

~�pGÞk4
i (or pþ 1 for

even p) has the same momentum dependence.
For the highly non-Gaussian ansatz, Eq. (19), in suffi-

ciently biased subsamples, the quadratic and cubic terms
are large and gNL ¼ Oðf2NLÞ (assuming p > 2), so the two
shapes contribute equally. In the large volume, this is also
true because the loop integrals in the trispectrum can be
contracted diagrammatically in different ways, contri-
buting terms that approximate both tree level shapes [16].
As an exception, for p ¼ 2, the �NL shape dominates in
both volumes because the quadratic term is abnormally
large compared to the cubic term.
This generalizes to higher n-point functions as well:

the tree-level shape(s) that are dominant throughout the
large volume will also dominate in sufficiently biased

small subsamples. For Eq. (16), the shape from h~�G;k1
�

:::~�G;kn�1
ð ~Nn�1

~�n�1Þkn
i will dominate for any n-point

function on all scales; for Eq. (19), contributions to

n-point functions from �m�p
G terms (the regenerated miss-

ing terms) will dominate, and the momentum dependence
in the large volume will be similar.
Conclusion.—From these examples, we see that for

homogeneous and isotropic curvature perturbations in a
large volume characterized by an arbitrary set of local
terms, one recovers a weakly non-Gaussian series in
typical subsamples on sufficiently small scales. This limit,
where terms fall off by a characteristic ratio r and the
non-Gaussian moments follow a hierarchical scaling
Mnþ1=Mn � r, is therefore statistically natural. (Any
model for local non-Gaussianity can be expressed as a
superposition of the two specific cases considered here.)
Furthermore, the shapes of n-point functions cannot
change arbitrarily by subsampling. In particular, the char-
acteristic squeezed-limit behavior of the local bispectrum
cannot be erased by fine-tuning the coefficients, and is
therefore a reliable observational signal of local non-
Gaussianity even if the Universe is larger than what we
observe.
These results suggest two important things for under-

standing what limits on or detection of non-Gaussianity
imply for theories of the primordial Universe. First, the
form of the local ansatz is protected against changes of
scale: although the finiteness of the observable Universe
means a one-to-one map between observations and theory
parameters may not be possible, subsampling does not lead
to correlation functions with arbitrary shape in momentum
space. Second, these results are independent of a specific
dynamical origin for the fluctuations and suggest that
purely statistical arguments could be used to define a space
of most plausible non-Gaussian models to be tested against
observations. Our results are complementary to other sta-
tistical restrictions on the relative size of certain moments
[17]. Extensions and applications of this result for local,
scale-dependent local, and nonlocal non-Gaussianity are
in progress [6,18].
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