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We prove basic theorems about the ground states of the S ¼ 1 Bose-Hubbard model. The results are

quite universal and depend only on the coefficient U2 of the spin-dependent interaction. We show that the

ground state exhibits saturated ferromagnetism if U2 < 0, is spin-singlet if U2 > 0, and exhibits ‘‘SU(3)-

ferromagnetism’’ if U2 ¼ 0, and completely determine the degeneracy in each region.
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Recent progress in cold atom experiments, in particular
those of bosons trapped in an optical lattice, has led to a
renewed interest in the low energy properties of the Bose-
Hubbard model [1–3]. Especially the system of spinor
bosons, in which hyperfine spin degrees of freedom couple
to many-body quantum physics of bosons, are expected to
have a variety of phases including the spin-singlet, nematic,
and ferromagnetic phases [4–8]. From a theoretical point
of view, it is also interesting to compare the situation with
that of the Fermi-Hubbard model, where intricate interplay
between the spin degrees of freedom and many-body quan-
tum physics has been studied in depth [9,10].

Here, we shall present basic theorems about the ground
states of the standard Bose-Hubbard model for S ¼ 1
bosons. We precisely characterize, in each parameter
range, the degeneracy and the total spin angular momen-
tum of the ground states, and identify the signs of the
‘‘wave function’’ represented in an appropriate basis. The
result depends only on the single parameter U2, and one
gets ferromagnetic ground states for U2 < 0, a spin-singlet
ground state for U2 > 0 (when the boson number is even),
and ground states with ‘‘SU(3)-ferromagnetism’’ for
U2 ¼ 0. These results are surprisingly universal and do
not depend on the lattice structure, the spin-independent
interaction, or the boson number. This is in a sharp contrast
with corresponding results in the Fermi-Hubbard model
[9–11] and the Heisenberg spin system [12,13], where
strict restrictions on lattice structures and the electron
numbers are usually required.

We hope that these basic and rigorous results will be
useful for the future theoretical and numerical studies of
the Bose-Hubbard model. We note that our Theorem 3 for
U2 ¼ 0 is a special case of the theorem by Eisenberg and
Lieb proved for spinor bosons in continuum [14].

Definitions and main theorems.—We consider a system
of N spinor bosons with S ¼ 1 on a finite lattice �, where
N is arbitrary and fixed. For each site x 2 �, we denote by

ayx;� and ax;� the creation and the annihilation operators,

respectively, of a boson at x with spin � 2 fþ;�; 0g.
We define the number operators by nx;� :¼ ayx;�ax;�
and nx :¼ P

�2fþ;�;0gnx;�, and the spin operators by

Sð�Þx :¼ P
�;�2fþ;�;0ga

y
x;�S

ð�Þ
�;�ax;� for � ¼ x, y, z, where

Sð�Þ�;� are the spin matrices for S ¼ 1. We write Sx :¼
ðSðxÞx ; SðyÞx ; SðzÞx Þ. The total spin operators are Sð�Þtot :¼P

x2�S
ð�Þ
x . As usual, we define S�tot ¼ SðxÞtot � iSðyÞtot , and

write the eigenvalue of ðStotÞ2 ¼
P

�¼x;y;zðSð�Þtot Þ2 as

StotðStot þ 1Þ.
We shall make a frequent use of the basis states

�n :¼
8<
:

Y
x2�;�2fþ;�;0g

ðayx;�Þnx;�
9=
;�vac; (1)

where �vac is the state with no bosons in the trap, and
the multi-index n ¼ ðnx;�Þx2�;�2fþ;�;0g is a collection of

nonnegative integers such that
P

x;�nx;� ¼ N. The whole

Hilbert space H is spanned by all such �n. For M ¼
0;�1; . . . ;�N, we denote by IM the set of n satisfyingP

xðnx;þ � nx;�Þ ¼ M, and by HM the subspace of H
spanned by �n with n 2 IM. Note that any � 2 HM

satisfies SðzÞtot� ¼ M�, and that H ¼ L
N
M¼�N HM.

We consider the standard Hamiltonian of the S ¼ 1
Bose-Hubbard model [5,6]

H ¼ � X
x;y2�;�2fþ;�;0g

tx;ya
y
x;�ay;� þ X

x2�

Vxnx

þ X
x2�

�
U0

nxðnx � 1Þ
2

þU2

�ðSxÞ2
2

� nx

��
; (2)

which has a global SU(2) symmetry of the spin rotation.
We assume that the hopping matrix elements tx;y ¼ ty;x
are nonnegative, and the whole lattice � is connected via
nonvanishing tx;y. The standard choice, where one sets

tx;y ¼ t > 0 for neighboring x, y, and tx;y ¼ 0 otherwise,

is sufficient. Here, Vx 2 R is the on site single-particle
potential, and U0 and U2 are real coefficients for the spin-
independent and spin-dependent two-body interactions,
respectively. We make no assumptions on Vx and U0.
Assumptions on U2 are stated in the theorems.
In an (idealized) experimental realization of the Bose-

Hubbard model, one initially prepares specified numbers
of bosons with þ, 0, and � spins in the trap, and lets the
system evolve in time. As long as U2 � 0, spin flips take
place and the state evolves into a superposition of various
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spin states, but the eigenvalue of SðzÞtot, which is M, is
conserved. Therefore, the system is expected to evolve
into a low energy state within each subspace HM. It
thus makes sense to consider local ground states within
each HM.

Theorem 1.—If U2 < 0, the local ground state �GS
M in

HM is unique and is written as

�GS
M ¼ X

n2IM

�n�n; (3)

with �n > 0, and has the maximum possible total spin
Stot ¼ N. The local ground state energy EGS

M is independent
ofM. Thus, each�GS

M is the global ground state inH , and
the ground states are ð2N þ 1Þ-fold degenerate.

In short, the ground states exhibit saturated ferromagne-
tism and are unique apart from the trivial ð2Stot þ 1Þ-fold
degeneracy. Note that the ground states of the present
bosonic system with U2 < 0 may be in various phases,
including Bose-Einstein condensation and Mott insulator.
As for the magnetic property, however, the ground states
universally exhibit saturated ferromagnetism.

Theorem 2.—If U2 > 0, the local ground state �GS
M in

HM is unique and is written as

�GS
M ¼ X

n2IM

�nð�1Þ
P
x

nx;0=2

�n; (4)

with �n > 0. The state �GS
M has total spin Stot ¼ jMj if

N �M is even, and Stot ¼ jMj þ 1 if N �M is odd. The
local ground state energy satisfies EGS

M ¼ EGS�M for any M,
EGS
jMj < EGS

jMjþ1
if N �M is even, and EGS

jMj ¼ EGS
jMjþ1

if

N �M is odd.
Thus,�GS

0 is the the unique global ground state inH if

N is even, while �GS
1 , �GS

0 , and �GS
�1 form a triplet of

global ground states if N is odd. In short, the ground states
have the smallest total spin as possible, as is expected from
the antiferromagnetic nature of the interaction. We remark,
however, that the present theorem is not sufficient to
determine the magnetic property of the ground states, since
the constraint on Stot alone does not specify magnetic
structure uniquely. Let us recall that the Heisenberg model
on a bipartite lattice satisfies a theorem very similar to
Theorem 2 [12,13], but it may exhibit various magnetic
properties (e.g., antiferromagnetic long range order, quan-
tum criticality, Haldane phase, dimerization) depending on
details of the model.

Finally, we focus on the special case U2 ¼ 0, where the
spin-dependent interaction is absent. In this case, no spin-
flip takes place during the time evolution, and the numbers
of þ, 0, and � spin bosons are conserved separately.
We thus have to talk about local ground states in smaller
subspaces. For three nonnegative integersU,D, and Z such
that Uþ ZþD ¼ N, let us denote by IU;D;Z the set of n
such that

P
xnx;þ ¼ U,

P
xnx;� ¼ D, and

P
xnx;0 ¼ Z.

We also denote by H U;D;Z, the subspace spanned by �n

with n 2 IU;D;Z.

Theorem 3.—If U2 ¼ 0, the local ground state �GS
U;D;Z in

H U;D;Z is unique and is written as

�GS
U;D;Z ¼ X

n2IU;D;Z

�n�n; (5)

with �n > 0. The local ground state energy EGS
U;D;Z is

independent of (U, D, Z). Thus, each �GS
U;D;Z is the

global ground state in H , and the ground states are
ðN þ 1ÞðN þ 2Þ=2-fold degenerate.
This theorem is a special lattice version of that proved in

Ref. [14], where details about the degeneracy is omitted.
See also Ref. [15]. The high degeneracy of the ground
states can be understood as a manifestation of the SU(3)
symmetry of the model with U2 ¼ 0. The ground state
does not exhibit magnetic orderings in the standard sense,
but there certainly is an ‘‘exchange interaction’’ which
realizes the property Eq. (5). One may say that the ground
states exhibit ‘‘SU(3)-ferromagnetism’’.
Limiting cases.—While the above theorems provide only

general information about the ground states, much more
detailed information may be obtained in some special
cases.
As a simple example, we show that one can precisely

characterize the ground state in the ‘‘singlet phase’’ by using
a rigorous perturbation theory. Let � be a uniform lattice,
such as the cubic lattice with periodic boundary conditions,
and denote the number of sites as j�j. We consider the case
when � :¼ N=j�j is an even integer. We set Vx ¼ 0 for all
x 2 �, and tx;y ¼ t > 0 when x and y are neighboring sites

and tx;y ¼ 0 otherwise. Then we shall perturb around the

trivial model with U0 > 0, U2 > 0, and t ¼ 0. By applying
the general results (see Theorems 4.1 and 4.3) in Ref. [16],
we can show the following.
Theorem 4.—There are positive constants B and �which

depend on the nature of � but not on the size j�j. When
one has U0=t > B and U2=t > B, the unique ground state
is a small perturbation of the product state where each site
is occupied by � bosons which form a spin singlet. There is
an energy gap larger than � above the ground state energy.
Let us also make a remark on the weak coupling limit,

which essentially is a rewording of the earlier results in
Refs. [17,18]. Let us start from a model that satisfies the
conditions for Theorems 1 or 2, and then take the limit U0,
U2 ! 0. Since the limiting theory is certainly that of free
bosons, the (local) ground state in H 0 is written as

� ¼ X
n

�nffiffiffiffiffi
n!

p ðN�n
2 Þ! ðb

y
0 Þnðbyþby�ÞðN�nÞ=2�vac; (6)

where we have assumed that N is even. Here, n is summed

over even integers from 0 to N, and by� is the creation
operator of the unique single-particle ground state with
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spin �. Interestingly, the fact that � has Stot ¼ 0 or N,
alone uniquely determines the coefficients �n.

We have (apart from normalization) �n¼2n=2=

f ffiffiffiffiffi
n!

p ½ðN�nÞ=2�!g if Stot¼N, and �n¼ð�2Þ�n=2�ffiffiffiffiffi
n!

p
=ðn=2Þ! if Stot ¼ 0 [19]. Note that j�nj2 is proportional

to the probability of observing n spin-0 bosons in the
state �. If Stot ¼ N, this probability distribution is
j�nj2 ’ const exp½�2Nfðn=NÞ � ð1=2Þg2� for large N. If
Stot ¼ 0, on the other hand, it becomes the power law
distribution j�nj2 ’ const=

ffiffiffi
n

p
, which is quite characteristic.

Of course exactly the same claim applies to a continuous
model of bosons, i.e., bosons in a standard optical trap (see
the final part of the Letter). To our knowledge, the power
law distribution of the number of spin-0 bosons in the
ground state with Stot ¼ 0 has not yet been observed
experimentally.

Proof of Theorem 1.—We shall show below that
h�n; H�n0 i � 0 for any n, n0, and that the whole set IM

are connected via nonvanishing h�n; H�n0 i. Then the
Perron-Frobenius theorem [20] guarantees that the ground
state in HM is unique and is written as Eq. (3).

To determine the total spin and the degeneracy, note
first that �GS

N (which consists only of spinþ bosons) has
Stot ¼ N. With Eq. (3) in mind, one finds for M ¼
�N; . . . ; N � 1 that�M :¼ ðS�totÞN�M�GS

N is nonvanishing
and admits the expansion as in Eq. (3) with nonnegative
coefficients. Noting that �n > 0 in Eq. (3), we find
h�M;�

GS
M i � 0. But we know that �M is an eigenstate

of H (since ½H; S�tot� ¼ 0), and the uniqueness of the
ground state within HM shows that �M ¼ ðconstÞ�GS

M .
Obviously, �M has Stot ¼ N since ½ðStotÞ2; S�tot� ¼ 0.

It remains to prove the claim about the matrix elements.
Note that the off diagonal matrix elements h�n; H�n0 i in a
bosonic system can be directly read off from the represen-
tation of H in terms of ay and a’s. This is in a marked
contrast with fermionic systems, in which intricate behav-
ior of fermionic sign plays an essential and nontrivial role.
Clearly, the hopping term yields a matrix element �tx;y
which is nonpositive. To examine the spin-dependent inter-

action, we recall that ðSxÞ2¼ðSþx S�x þS�x Sþx Þ=2þðSðzÞÞ2, in
which the second term only gives diagonal matrix elements

of H in the �n basis. Noting that Sþx ¼ ffiffiffi
2

p ðayx;þax;0 þ
ayx;0ax;�Þ, S�x ¼ ffiffiffi

2
p ðayx;0ax;þ þ ayx;�ax;0Þ, an inspection

shows that the only contribution to off diagonal matrix

elements comes from U2fayx;þayx;�ðax;0Þ2 þ H:c:g. This

has the desired sign if U2 � 0.
To show the connectivity, fix a site x. From any configu-

ration n, one first brings all the bosons to x. Then by
applying theU2 term, one can change the spin-components
to any desired one (within the fixed M). This shows that
any configuration in IM is connected (via nonvanishing
matrix elements of H) to the one configuration where all
the particles sit on x.

Proof of Theorem 2.— It is apparent that the U2 terms
now produce positive matrix elements h�n; H�n0 i, and the

Perron-Frobenius theorem does not apply as in the above

proof. Instead, we define new basis states by �0
n :¼

ð�1Þ
P

x
nx;0=2�n and show that h�0

n; H�0
n0 i � 0 for any n,

n0. To see this first, note that the hopping term again yields
the matrix element �tx;y which has the desired sign, since

the hopping preserves
P

xnx;0. Next, note that the off di-

agonal contributions from the U2 terms change the number

of spin 0 bosons by two. Thus, the prefactor ð�1Þ
P

x
nx;0=2

yields an extra �1, and the matrix element becomes �U2,
which has the desired sign. Since it is obvious (from the
proof of Theorem 1) that the whole set IM are connected
via nonvanishing h�0

n; H�0
n0 i, we can apply the Perron-

Frobenius theorem to conclude that the ground state in
HM is unique and is written as Eq. (4). We note that this
argument is the same as that used for S ¼ 1 spin systems
in Refs. [21–23] but seems to be more straightforward in
the present context of many boson system.

Since H, SðzÞtot, and ðStotÞ2 are simultaneously diagonaliz-
able, the uniqueness of the ground state (in HM) implies
that �GS

M is an eigenstate of ðStotÞ2. To determine the

eigenvalue, consider a toy model on the same lattice �,
with the same boson number N, and the Hamiltonian
obtained by setting tx;y ¼ 0 for all x, y 2 � and Vx ¼ 0

for all x 2 �nfog in H of Eq. (2), where o is a fixed site in
�. We still have U2 > 0. When Vo is negative and large
enough, the toy model has ground states in which all the N
particles occupy o and are coupled to minimize ðSoÞ2.
The bosonic symmetry of the state implies that the mini-
mum possible Stot in HM is jMj or jMj þ 1 when N �M
is even or odd, respectively. On the other hand, the Perron-
Frobenius theorem can be applied also to the toy model

to show that the ground state ~�GS
M in HM is unique

and admits an expansion like Eq. (4) with �n � 0. This

means h ~�GS
M ;�GS

M i � 0, which implies that �GS
M has the

same Stot as ~�GS
M .

The symmetry EGS
M ¼ EGS�M is obvious. To prove the

ordering of EGS
M , takeM � 0 and define� :¼ S�tot�GS

Mþ1 2
HM. By using SþtotS�tot ¼ ðStotÞ2 � ðSðzÞtotÞ2 þ SðzÞtot , we find
k�k2 ¼ h�GS

Mþ1; S
þ
totS

�
tot�

GS
Mþ1i ¼ 2ð2Mþ 3Þk�GS

Mþ1k2 if

N �M is even, and k�k2 ¼ 2ðMþ 1Þk�GS
Mþ1k2

if N �M is odd. We thus see � � 0. Note that
� 2 HM is an eigenstate of H with the eigenvalue
EGS
Mþ1 because ½S�tot; H� ¼ 0. We thus find EGS

M � EGS
Mþ1.

When N �M is even, � (like �GS
Mþ1) has Stot ¼ Mþ 2

while�GS
M has Stot ¼ M. Thus,�GS

M and� are orthogonal,

and the uniqueness of the local ground state in
HM implies EGS

M <EGS
Mþ1. When N�M is odd, define

�0 :¼ Sþtot�GS
M 2 HMþ1. By using S�totSþtot¼ðStotÞ2�

ðSðzÞtotÞ2�SðzÞtot and recalling that �GS
M has Stot ¼ Mþ 1, we

find k�0k2¼h�GS
M ;S�totSþtot�GS

M i¼2ðMþ1Þk�GS
M k2�0.

Since �0 2 HMþ1 is an eigenstate of H with the eigen-
value EGS

M , we find EGS
Mþ1 � EGS

M . This, with the previous

inequality, implies the desired equality EGS
M ¼ EGS

Mþ1.
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Proof of Theorem 3.—The proof is essentially the
same as that of Theorem 1. We use the fact that
h�n; H�n0 i � 0 for any n, n0, and that the set IU;D;Z

are connected via nonvanishing h�n; H�n0 i. Then the
Perron-Frobenius theorem proves the uniqueness of the
local ground state in each H U;D;Z and the property

Eq. (5). To show the degeneracy, we again start from
the fully polarized ground state �GS

N;0;0 and observe that

ðSþ!�
tot ÞDðSþ!0

tot ÞZ�GS
N;0;0 is a constant times �GS

N�D�Z;D;Z.

Here, we have introduced two lowering operators

Sþ!�
tot :¼ P

xa
y
x;�ax;þ and Sþ!0

tot :¼ P
xa

y
x;0ax;þ, which

commute with H if U2 ¼ 0.
Some extensions.—One can replace the interaction part

in Eq. (2) by
P

x2�½uð0Þx nxðnx�1Þ=2þuð2Þx fðSxÞ2=2�nxg�,
thus making the interaction site dependent. The conditions

for the theorems then read ‘‘if uð2Þx �0 for any x and uð2Þx <0

for some x’’ for Theorem 1, ‘‘if uð2Þx � 0 for any x and

uð2Þx > 0 for some x’’ for Theorem 2, and ‘‘if uð2Þx ¼ 0 for

any x’’ for Theorem 3. uð0Þx is arbitrary.
One can take into account nonlocal and many-body

interactions to our theory without any modifications.
The spin-independent interaction U0nxðnx � 1Þ=2
can be replaced by any function UððnxÞx2�Þ of the
number operators, and still Theorems 1, 2, and 3 are
valid as they are. If one replaces the spin-dependent
interaction U2ðSxÞ2 by

P
x;yJx;ySx � Sy, Theorem 1 is still

valid under the condition Jx;y � 0 (and Jx;y < 0 for

some x, y), but Theorem 2 no longer holds under any
conditions. This is because Sx � Sy with x � y generates

an off diagonal term like ayx;0a
y
y;þax;þay;0, whose sign

is not changed by the introduction of the prefactor

ð�1Þ
P

x
nx;0=2.

When an external magnetic field in the z direction is
applied to the system, one should add to H, the new termsP

x½�pxfnx;þ � nx;�g þ qxfnx;þ þ nx;�g�, which are the

linear and quadratic Zeeman terms, respectively [24].
With this modification, which breaks the global SU(2)
symmetry, we can only prove the basic properties
Eqs. (3)–(5), as well as the uniqueness of the ground state
in each subspace.

For the system of bosons with spin S � 2 and the
same Hamiltonian Eq. (2), one can prove theorems
corresponding to Theorems 1 and 3 in the same manner.
Now the model at U2 ¼ 0 has a higher SUð2Sþ 1Þ
symmetry, and the degeneracy becomes larger. There
seems to be no straightforward extension of Theorem 2,
suggesting richer phase structures in higher S models
[18,25,26].

Continuous systems.—Since our theorems cover models
with a wide range of parameter values, it is expected
that they are valid in the formal continuum limit. More
precisely, consider a system of N spin-1 bosons in R3 with
the standard Hamiltonian [27,28]

H ¼
Z

d3r
X
�

�
� @

2

2m
�y

�ðrÞ���ðrÞ þ VðrÞ�y
�ðrÞ��ðrÞ

�

þ
Z

d3rd3r0
�X
�;�0

U0ðr; r0Þ�y
�ðrÞ�y

�0 ðr0Þ��ðrÞ�y
�0 ðr0Þ

þ X
�;�0;�;�0

U2ðr; r0ÞðS�;� � S�0;�0 Þ

��y
�ðrÞ�y

�0 ðr0Þ��ðrÞ��0 ðr0Þ
�
; (7)

where the trap potential VðrÞ and the spin-independent
interaction U0ðr; r0Þ are completely arbitrary. Then, we
state (i) when U2ðr; r0Þ � 0 for any r and U2ðr; r0Þ< 0
for some r, all the statements of Theorem 1 are valid as
they are, and (ii) whenU2ðr; r 0Þ ¼ c2�ðr� r0Þwith c2 > 0,
all the statements of Theorem 2 are valid as they are.
One can easily construct ‘‘proofs’’ based on the standard

variational argument (see, e.g., Refs. [14,29]) of these
statements. We shall not, however, claim that we have
proved them rigorously since mathematically rigorous
treatment of continuous systems requires some nontrivial
preparations. In fact, the claim (i) may be justified by
standard techniques (see, e.g., Ref. [30]) with suitable
assumptions on the potentials. But a rigorous justification
of the claim (ii) may require nontrivial effort because of the
delta function interaction.
Discussions.—We have proved basic theorems about

the ground states of the standard S ¼ 1 Bose-Hubbard
model. The result is surprisingly sharp, and we were able
to completely characterize the finite-volume ground
states for U2 < 0, U2 > 0, and U2 ¼ 0. A key to under-
stand this sharpness may be the large degeneracy at
U2 ¼ 0, which reflects the SU(3) symmetry. Highly
degenerate ‘‘SU(3)-ferromagnetic’’ ground states at
U2 ¼ 0 are easily lifted either to give ferromagnetic
states for U2 < 0 or a spin-singlet for U2 > 0 (when the
boson number is even).
The robustness of Theorems 1, 2, and 3 and their

proofs are also impressive if one recalls that magnetic
properties of the Fermi-Hubbard model depend crucially
on lattice structures and electron numbers. Recall, for
example, that Lieb’s theorem [9,11] (which is a counter-
part of Theorem 2) is valid only for the model on a
bipartite lattice at half filling (and its proof is quite
ingenious). This is a manifestation of the fact that ‘‘ex-
change interaction’’ in bosons are much more tractable
than those in fermions.
A remaining challenge is to take these advantages

to give a concrete characterization of nontrivial magn-
etic structures for U2 > 0 which are intrinsic to spinor
bosons.
It is a pleasure to thank Takuya Hirano, Tohru Koma,

Fumihiko Nakano, Masahiro Takahashi, Akinori Tanaka,
and Yuta Toga for valuable discussions.
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