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From ultracold atoms to quantum chromodynamics, reliable ab initio studies of strongly interacting

fermions require numerical methods, typically in some form of quantum Monte Carlo calculation.

Unfortunately, (non)relativistic systems at finite density (spin polarization) generally have a sign problem,

such that those ab initio calculations are impractical. It is well-known, however, that in the relativistic case

imaginary chemical potentials solve this problem, assuming the data can be analytically continued to the

real axis. Is this feasible for nonrelativistic systems? Are the interesting features of the phase diagram

accessible in this manner? By introducing complex chemical potentials, for real total particle number and

imaginary polarization, the sign problem is avoided in the nonrelativistic case. To give a first answer to the

above questions, we perform a mean-field study of the finite-temperature phase diagram of spin-1=2

fermions with imaginary polarization.
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Ultracold Fermi gases provide an accessible and clean
environment to study quantum many-body phenomena
[1,2], ranging from Bose-Einstein condensation (BEC)
to Bardeen-Cooper-Schrieffer (BCS) superfluidity. In the
dilute limit, where the range of the interaction is smaller
than that of any other scale, a single parameter ðkFasÞ�1,
where as is the s-wave scattering length and kF is the
Fermi momentum, describes the microscopic interactions
completely. These are tuned by an external magnetic field
in the presence of a Feshbach resonance.

At large as values (at the crossover between BEC and
BCS), these systems display universal properties. Here,
the scale for all physical observables is set solely by kF
(or, equivalently, the density), which is the only scale left
in the problem. Thus, no obvious small expansion parame-
ter exists in this limit. This represents a major challenge for
theoretical many-body approaches [3]. Recently, experi-
ments in this so-called unitary regime have achieved high
precision [4], which potentially facilitates benchmarking
of theoretical methods.

Despite rapid experimental and theoretical advances,
our understanding of ultracold Fermi gases at unitarity
remains incomplete, most notably for the case of spin-
imbalanced systems. For a sufficiently large imbalance,
one expects a phase transition from a BCS-type superfluid
to a polarized normal gas. Such a transition was observed
in experiments at MIT and Rice University [5] and is in
accordance with various theoretical studies [6–8].

Apart from ultracold gases, a better understanding of
imbalanced fermion systems is of great importance also
in other research fields. For example, lattice Monte Carlo
(MC) calculations of nuclei [9] are confronted with similar
problems in isospin asymmetric nuclei, i.e., nuclei with an
unequal number of neutrons and protons.
We shall focus on the as ! 1 limit for a spin-

imbalanced two-component Fermi gas at zero and finite
temperature. Unlike previous studies [6–8], however, we
consider complex valued chemical potentials of the spin
components �" and �#. In ab initio MC calculations, one

can thus avoid the sign problem, which impedes studies of
spin-polarized systems for real �.
This approach parallels that of a purely imaginary �

in relativistic quantum field theories, which enables an
analysis of the phase structure of QCD [10] at finite but
imaginary quark density on the lattice. The physics at
real densities is then obtained by analytic continuation to
real values of the chemical potential. The applicability
of an analytic continuation with polynomials is restricted
to small � values, more precisely �=T & 1. So far, this
approach has not delivered conclusive evidence for or
against the existence of a critical end point of the line of
chiral transitions in the T-� plane [11]. For nonrelativistic
fermions in the BEC-BCS crossover, on the other hand, the
tricritical end point of the line of (second-order) superfluid
transitions is known to exist. Moreover, our present study
suggests that this point might be accessible in lattice
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calculations using complex-valued chemical potentials.
A successful application of such an approach to ultracold
Fermi gases may be useful for future lattice QCD studies
as well. In fact, it can be very beneficial for present and
future studies of the QCD phase diagram to have an experi-
mentally accessible system at hand that allows us to test
theoretical approaches and techniques in a clean and con-
trolled environment, especially since the experimental
search for the critical point in the QCD phase diagram
has proven tremendously difficult and therefore requires
reliable guidance from theory.

In this first analysis, we employ a mean-field approach,
as discussed elsewhere for the case of real-valued �
(see, e.g., Refs. [6,8]), to study the phase diagram in the
complex-valued case. Although this can only be viewed
as a lowest-order approximation, it relies only on a single
input parameter (e.g., kF) as is the case for the full evalu-
ation of the associated path integral using, e.g., MC calcu-
lations. Thus, our results do not suffer from a parameter
ambiguity but only from an uncertainty associated with
the underlying approximation. This can be understood on
very general grounds from an analysis of the fixed-point
structure of fermionic theories [12].

We begin by discussing a few general aspects of non-
relativistic theories with complex-valued chemical poten-
tials. In general, the grand canonical partition functionZ of
nonrelativistic fermions reads

ZðT; ��; hÞ ¼ Tr½e��ðĤ� ��ðN̂"þN̂#Þ�hðN̂"�N̂#ÞÞ�; (1)

where T is the temperature and � ¼ 1=T. We shall assume

that the Hamiltonian Ĥ describes the dynamics of a theory
with two fermion species, denoted by " and # , interacting
via a two-body interaction. Here, N̂";# are the particle

number operators associated with each species and �";#
are the corresponding chemical potentials. For conveni-
ence, we introduce the average chemical potential ��¼
ð�"þ�#Þ=2 and the asymmetry parameter h¼ð�"��#Þ=2.

As is well-known, MC calculations for unitary fermions
can be performed without a sign problem for h ¼ 0 (see,
e.g., Refs. [13,14]). This is not true in general, however, as
polarization leads to a sign problem, regardless of the form
of the interaction. To proceed, we consider an imaginary-
valued asymmetry parameter h, corresponding to a theory
with complex-valued �";# and therefore define h ¼ ihI,
where hI is a real quantity. It is easy to verify that MC
calculations with imaginary-valued asymmetry can be
studied with standard methods without a sign problem:
the fermion determinants appearing in the probability
measure are complex conjugates of one another. By
analytically continuing ZðT; ��; hIÞ, one then obtains
ZðT; ��; hÞ, which is the central quantity in studies of
imbalanced Fermi gases.

To understand whether the tricritical end point is acces-
sible with such an approach, we study the mean-field
phase diagram with complex-valued chemical potentials.

We compute the mean-field potential for the Uð1Þ order
parameter, starting from the path-integral representation
for Z,

Z ¼
Z

Dc yDc e�S½c y;c �;

where

S½c y; c � ¼
Z

d�
Z

d3xfc yð@� � ~r2 � ��Þc
� hðc �

" c " � c �
# c #Þ þ �gðc yc Þðc yc Þg; (2)

and c T ¼ ðc "; c #Þ and �g denotes the bare four-fermion

coupling. The dimensionless renormalized four-fermion
coupling g� �g� is related to the scattering length as by

4��g�1 ¼ ða�1
s � creg:�Þ: (3)

Here, � denotes the ultraviolet cutoff and the constant
creg > 0 depends on the regularization scheme.We use units

such that 2m ¼ 1, where m is the fermion mass. The inter-
action is represented by an auxiliary scalar field ’�
g’c "c #, where the parameter g’ is chosen to reproduce

the four-fermion term in the action. Since the resulting
action is quadratic in the fermion fields, they can be inte-
grated out. Thus, one obtains the order-parameter potential

�Uð’Þ ¼ �2� ��j’j2 �
Z d3q

ð2�Þ3 ln

�
1

2
ð coshð�hÞ

þ coshð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q2 � ��Þ2 þ g2’j’j2

q
ÞÞ
�
: (4)

This potential is directly related to the grand canonical
potential � ¼ VUð’0Þ, where V is the volume of the sys-
tem and ’0 denotes the value of ’ that minimizes the
potential. In that state, g2’j’0j2 can be identified with

the fermion gap�, the order parameter of the spontaneously
broken Uð1Þ symmetry, associated with a superfluid state.
From the (regularized) grand canonical potential we can
obtain all thermodynamic observables. In the unitary limit,
the dimensionless (universal) quantities, such as the critical
temperature for the superfluid transition Tc= ��, the corre-
sponding gap �= ��2, and the ground-state energy E= ��,
are, as expected, independent of �� and g’. To compute

the critical temperature Tc, it is convenient to employ the
gap equation ð@U=@’Þj’0

¼ 0 and exploit the fact that

the fermion gap �� ’2
0 vanishes identically at T ¼ Tc.

From Eq. (4), it is apparent that mean-field potentialU is
2� periodic in�hI. This is a property not only of the mean-
field approximation but of the full theory, as can be seen by
inspecting Eq. (2); the imaginary part of h effectively shifts
the Matsubara modes of the fermions �n ¼ ð2nþ 1Þ�T
by hIT. [Loosely speaking, @� is replaced by i�n when the
action S is formulated in momentum space.] It follows that
it is not possible to study arbitrary asymmetries with this
technique: hI is bounded to values �hI < �. Nevertheless,
a large part of the phase diagram in the physical (T, h)
plane can be explored within this approach. As we show
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next, the mean-field calculation presented here suggests
that a (tri)critical point in the phase diagram may indeed
be accessible in lattice MC calculations with imaginary h.

In Fig. 1, we show the well-known mean-field phase
diagram in the (T, h) plane (see, e.g., Refs. [6,8]). We
refrain from discussing the appearance of inhomogeneous
phases (Sarma and/or FFLO) and focus on the phase boun-
daries of the homogeneous ones. In Fig. 2, we show the
corresponding phase diagram in the plane spanned by
the temperature and the imaginary-valued asymmetry pa-
rameter. As noted above, the phase diagram is 2� periodic

in�hI. We therefore show only the domain�hI2½��;��,
bounded by the green dashed-dotted lines.
Given a phase diagram for imaginary h, obtained, e.g.,

using lattice MC calculations, one can access only the
temperature regime T > h=� in the physical (T, h) plane
of Fig. 1. Nevertheless, this represents a fairly large part
of the phase diagram, which is at the heart of theoretical
and experimental studies. Most remarkably, our analysis
suggests that the (tri)critical point may be located within
the accessible part of the phase diagram, implying that this
point may be within the reach of lattice MC calculations
with an imaginary asymmetry parameter. The phase tran-
sition line can then be obtained from an analytic continu-
ation of the results for TcðhIÞ, as shown below.
The phase structure of the theory in the (T, hI) plane

(Fig. 2) is intriguing. It can be shown analytically that
Tc ! 1 for �hI ¼ ð2N þ 1Þ� with N 2 Z and ��> 0.
A similar result is found in relativistic fermion models,
such as the Gross-Neveu model in ð1þ 1Þd [15]. Again,
we expect this result to remain valid also beyond the mean-
field approximation. In fact, for �hI ¼ ð2N þ 1Þ� the
fermionic Matsubara modes �n ¼ ð2nþ 1Þ�T in Eq. (2)
effectively assume the form �n ¼ 2n�T associated with
bosonic degrees of freedom. Thus, in this case the fermions
acquire a (thermal) zero mode, which tends to condense,
independently of the actual value of the temperature.
However, contrary to relativistic fermion models, we find
numerically that Tc ! 1 already for j�hIj> jð�hIÞ1j ’
2:397. In other words, for jð�hIÞ1j � j�hIj<� there is
always a fermion condensate and the Uð1Þ symmetry is
not restored by increasing the temperature. For j�hIj<
jð�hIÞ1j, the phase transition is second order. The upper
limit jð�hIÞ1j will take a different value when one goes
beyond the mean-field approximation.
In our numerical studies we find that the value j�cphcpj

associated with the (tri)critical point is slightly lower than
jð�hIÞ1j. This close agreement appears to be a mere
coincidence. In fact, in the weak-coupling limit the differ-
ence between j�cphcpj and jð�hIÞ1j is larger than in the

unitary regime, at least in mean field approximation [16].
In this context, we note that the absence of a (tri)critical
point in the (T, hI) plane as well as the absence of Uð1Þ
restoration in the domain jð�hIÞ1j & j�hIj<� does not
imply their absence for real-valued asymmetries.
In analogy to relativistic fermion models [15], the ana-

lytic continuation of the phase boundary reproduces the
phase boundary only up to the (tri)critical point. However,
by means of an analytic continuation of the (full) order-
parameter potential, the phase diagram can be mapped out
in the complete region where�h < � of the physical (T, h)
plane, including the line of first-order transitions.
We stress that, using imaginary polarizations, the detec-

tion of a (tri)critical point appears to be feasible with lattice
MC calculations, even though this might require tech-
niques for the computation of the effective potential.
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FIG. 1 (color online). Phase diagram of an ultracold Fermi
gas at unitarity in the (T, h) plane. The solid (black) curve is a
line of second-order phase transitions, which ends at a tricritical
point (hcp= ��, Tcp= ��) and is followed by a line of first-order

transitions (see, e.g., Ref. [8]). The (red) dashed line is T= �� ¼
ðTcp=hcpÞh= ��, and the (green) dash-dotted line is �T= �� ¼ h= ��.

The (light-blue) thin curves are analytic continuations from
imaginary h using Padé approximants of order Nmax ¼
1; 2; . . . ; 5 [see Eq. (5)].
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FIG. 2 (color online). Phase diagram in the (T, hI) plane. The
solid line is a line of second-order phase transitions below which
the fermion gap is finite. The (red) dashed and (green) dash-
dotted lines are the analogues of those in Fig. 1, with hI
replacing h. Between the (red) dashed lines and the (green)
dash-dotted lines Tc ! 1 for ��> 0. For ��< 0, however, Tc

remains finite.
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The latter might be borrowed from, e.g., lattice MC studies
of supersymmetric models [17]. Also, one may employ
Padé approximants to scan the phase diagram and detect
the approximate location of the (tri)critical point by deter-
mining the point at which the Padé approximants do not
converge (see, e.g., Refs. [16,18,19] and also our discus-
sion below). In any case, the analytic continuation of
numerical data is difficult since one has to deal with
(systematic and statistical) uncertainties of the data from
the MC calculation (see, e.g., Ref. [20]).

The grand canonical partition function Z is, just like the
order-parameter potentialU, invariant under h ! �h. This
allows us to expand Z (and other physical quantities) in
powers of ð�hÞ2. In the mean-field approximation, we find
that the radius of convergence for the grand canonical
potential is r � j�hjmax ¼ � for � � 0 and ��> 0, but
r > � in the case of a finite gap �. These observations
facilitate the analytic continuation from imaginary- to
real-valued asymmetry parameter. When performing MC
calculations of ultracold Fermi gases, one now has several
options for the analytic continuation. For example, one
may fit the data for an observableO at a given temperature

T0¼1=�0 to the ansatz O¼PNmax

n¼0C
ðnÞ
O ð�0hIÞ2n. Here, CðnÞ

O
are constants determined by the fit to the data and Nmax

represents the truncation order (whose value depends
on the amount of data available). Moreover, it is assumed
that O has been made dimensionless with, e.g., a suitably
chosen power of ��. By means of a simple analytic
continuation of the polynomial, one then obtains the
dependence of O on h.

Within the mean-field approximation, we find that the
pressure for 0 � �0h & 1 (at a temperature T0 ¼ 1=�0 �
��=2) can, to a good approximation, be recovered from a fit
to the imaginary-h data with Nmax ¼ 2. Given an approxi-
mation for the pressure, one can in principle compute the
energy as a function of h. At zero temperature, this would
be equivalent to knowing the h-dependence of the so-called
Bertsch parameter. However, zero-temperature values of
physical observables for finite h= �� are obviously not
directly accessible within such an approach. Nonetheless,
it is known from lattice MC calculations that below the
superfluid transition the Bertsch parameter at h ¼ 0 rapidly
approaches its zero-temperature value [14]. In mean-field
approximation we find a similar behavior, also at finite
h= ��. It is therefore conceivable that a reliable estimate of
the Bertsch parameter at T ¼ 0 and finite polarization
can be extracted from lattice calculations at finite
temperatures and imaginary h by means of an analytic
continuation.

One may perform the analytic continuation using more
elaborate fit functions such as Padé approximants, also
used in lattice QCD studies [10]. In Fig. 1, for example,
we have reconstructed the phase boundary at real-valued
asymmetry by fitting the phase transition line in the (�hI,
� ��) plane with the function

C
1þPNmax

i¼1 ai½1� cosð�hIÞ�i
1þPNmax

j¼1 bj½1� cosð�hIÞ�j
; (5)

where Nmax again defines the truncation order. The
coefficients ai, bi, and the constant C are determined by
the fit. This ansatz respects the 2� periodicity in �hI and
can be generalized to observables other than Tc. In Fig. 1
we show the results for the critical temperature Tc obtained
using such a fit for Nmax ¼ 1; 2; . . . ; 5; see Ref. [16] for
details. Finally, we note that the fits may be even further
optimized by choosing even more elaborate sets of basis
functions [21].
We have completely disregarded any discussion of inho-

mogeneous phases and, in particular, the possible existence
of such phases in the (T, hI) plane. While such a discussion
is left to future work, we do not expect an inhomogeneous

condensate ’0ð ~xÞ � ei ~q0� ~x to show up for imaginary h.
In its well-known form, the (center-of-mass) momentum
~q0 is determined by the difference in the chemical poten-
tials of the spin-up and spin-down fermions. From a naive
point of view, one expects that the solutions ’0ð ~xÞ of the
quantum equation of motion turn into ’0ð ~xÞ � e� ~q0� ~x for
complex-valued chemical potentials and hence no longer
define the ground state.
We have discussed the possibility of studying polarized

Fermi gases with the aid of complex-valued chemical
potentials. While the latter are not required in analytic
studies, they are in MC calculations, which otherwise
would suffer from the sign problem. We have argued that
the (tri)critical point is in principle within reach in this
framework and that the zero-temperature limit of observ-
ables might be indirectly accessible as well. This work
therefore suggests that, together with the experimental data
at hand, future ab initio MC calculations with complex-
valued chemical potentials have the capacity to push our
understanding of collective many-body phenomena to a
new level. Our present study marks the starting point and
can already be used to guide these calculations.
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