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Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics of

the staggered field and the magnetization are very complex. We present a theory which is conceptually

much simpler and which uses collective coordinates to describe staggered field dynamics in antiferro-

magnetic textures. The theory includes effects from dissipation, external magnetic fields, as well as

reactive and dissipative current-induced torques. We conclude that, at low frequencies and amplitudes,

currents induce collective motion by means of dissipative rather than reactive torques. The dynamics of a

one-dimensional domain wall, pinned at 90� at its ends, are described as a driven harmonic oscillator with

a natural frequency inversely proportional to the length of the texture.
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New developments have created opportunities for using
antiferromagnets (AFMs) as active components in spin-
tronics devices [1]. AFMs are ordered spin systems which
lack a macroscopic magnetization in equilibrium because
neighboring spins compensate each other. Analogous to
ferromagnets, in AFMs domain walls can be engineered
[2], the anisotropic tunneling magnetoresistance (AMR) is
substantial [3], spin-wave logic gates can be useful [4], and
the order parameter can be switched ultrafast by light [5].
Additionally, AFMs have no stray fields, and high-
temperature antiferromagnetic semiconductors can be
realized [6], enabling control of the carrier concentration
governing all transport properties.

In magnetic materials, currents induce torques on the
magnetic moments [7]. In ferromagnets, these torques can
be used to switch the magnetization, induce steady state
precession in magnetic oscillator circuits, or move
domain walls. Theoretical [8] and experimental [9] results
indicate that current-induced torque effects are present in
AFMs as well, and that these effects are of the same
order of magnitude as in ferromagnets. However, several
aspects are fundamentally different. For instance, the
dynamics in AFMs are described by coupled equations of
the staggered field and the (out-of-equilibrium) magneti-
zation. Current-induced torques affect these variables
differently.

In AFMs, the staggered field may spatially vary and is
influenced by external magnetic fields and currents.
Traditionally, understanding the complex behavior of the
temporal- and spatial-dependent order parameter requires
solving a set of coupled equations with many degrees of
freedom. In this Letter, we formulate a conceptually sim-
pler theory of how external forces influence the staggered
field and magnetization dynamics in AFMs in terms of a
few collective coordinates. Our description is based on
the phenomenological theory of insulating AFMs [10],

extended to account for charge current flow [11], making
the theory valid also for metallic and semiconducting
AFMs. It includes the effects of dissipation, external mag-
netic fields, and both reactive (adiabatic) and dissipative
(nonadiabatic) current-induced torques in slowly varying
inhomogeneous antiferromagnetic textures.
Consider a basic AFM lattice consisting of two magnetic

sublattices, with magnetic moments m1ðr; tÞ and m2ðr; tÞ,
so that the total magnetization is mðr; tÞ ¼ m1ðr; tÞ þ
m2ðr; tÞ, and the antiferromagnetic order parameter is
lðr; tÞ � m1ðr; tÞ �m2ðr; tÞ. In the absence of magnetic
fields and textures, the equilibrium magnetization vanishes
and lðr; tÞ is finite and homogeneous. Below, we consider
the dynamics of the magnetization vector and the unit Néel
vector nðr; tÞ ¼ lðr; tÞ=lðr; tÞ.
To the lowest order in textures and magnetizations, the

AFM free energy reads [10,11]

U ¼
Z

dr

�
a

2
m2 þ A

2

X
i¼x;y;z

ð@inÞ2 �H �m
�
; (1)

where a and A are the homogeneous and inhomogeneous
exchange constants, respectively.H represents the external
magnetic field. From the free energy [Eq. (1)] and the
constraints jnj ¼ 1 and m � n ¼ 0, which are valid for
temperatures well below the Néel temperature, we can
construct the effective fields fn¼��U=�n¼An�
ðr2n�nÞ�mðH �nÞ and fm¼��U=�m¼�amþn�
ðH�nÞ. In all our results, we may generalize the free
energy [Eq. (1)] by adding anisotropy terms, e.g., the
easy-axis anisotropy Kzn

2
z=2.

Hals et al. [11] introduced phenomenological reactive
(adiabatic) and dissipative (nonadiabatic) current-induced
torque terms, as well as dissipation. With these additional
terms, the equations of motion are
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_n ¼ ð�fm �G1 _mÞ � nþ ��ðJ � rÞn; (2)

_m ¼ ½�fn �G2 _nþ ��ðJ � rÞn� � nþ Tnl; (3)

where� is the gyromagnetic ratio,G1 andG2 are phenome-
nological Gilbert damping parameters, and � (�) parame-
trize the adiabatic (nonadiabatic) current-induced torque
terms. Throughout this Letter, we disregard all nonlinear
terms that are contained in Tnl [11]. Equations (2) and (3)
are the AFM analogs to the Landau-Lifshitz-Gilbert-
Slonczewski equation for ferromagnets. By combining
these equations, the magnetization can be expressed in
terms of the antiferromagnetic order parameter, giving a
closed equation for the staggered field vector n to the linear
order in the out-of-equilibrium deviationsm, @tn, J, andH:

€n

~�
¼ �n� _HþG1

_fn þ ð�þG1�Þð _J � rÞn
þ a½�fn �G2 _nþ ��ðJ � rÞn�: (4)

Here ~� � �=ð1þG1G2Þ is a modified effective gyromag-
netic ratio in the presence of dissipation. Equation (4) is
the starting point for deriving the collective coordinate
equations of motion for AFMs.

In ferromagnets, magnetic textures are often rigid, so
that only a few, soft modes dominate the magnetization
dynamics, as in the seminal work of Schryer andWalker on
domain wall motion [12]. The evolution of these soft
modes can be described by a finite set of collective coor-
dinates. This approach greatly simplifies the understanding
of complex magnetization dynamics, making it possible to
approximately describe the dynamics at low energies by
considering only a few soft modes.

The collective coordinate approach has recently been
applied to magnetization dynamics in ferromagnets [13].
We now present how the equations of motion for the
collective coordinates can be constructed for AFMs. We
transform Eq. (4) by requiring the time dependence of the
Néel field to be described by a set of collective coordinates
fbiðtÞg: nðr; tÞ � nðr; fbiðtÞgÞ. The time derivative of the

staggered field is then _n ¼ _bi@bin. Similarly, €n ¼
€bi@binþOð _b2i Þ, where the second term is disregarded in

our linear response analysis since it is quadratic in the
driving forces.

The dissipation is described in Eq. (4) via the termsG1
_fn

and aG2 _n. The first term scales asG1A=ð�2�Þ, where � and
� are characteristic length and time scales of the staggered
field texture. The second term scales as aG2=�. In analyz-
ing the relative strengths of these dissipative terms, we use
the fact that the homogeneous and the inhomogeneous
exchange constants are related through a� A=ðl2d2Þ
[14], where d is the lattice constant and we have introduced
the antiferromagnetic order parameter l above. Dissipation
in metallic ferromagnets is small since it arises from the
spin-orbit interaction in combination with electron scatter-
ing [15]. It is likely that similar mechanisms in AFMs are

also weak, and that they have comparable effects on the
staggered field and the magnetization: G1l � G2=l 	 1.
From this we can conclude that ~� � � and that the second
dissipative term aG2 _n dominates in realistic systems,
where the typical size of the texture � is such that �
d.

Hence G1
_fn can be safely disregarded in the equation of

motion [Eq. (4)].
Our main result is the equations of motion for the soft

modes:

Mijð €bj þ �aG2
_bjÞ ¼ Fi: (5)

This equation is derived by introducing the collective
coordinates to Eq. (4), taking the scalar product with
@bjn, and integrating over the space. The dynamics are

equivalent to the classical motion of a massive particle
subject to dissipation-induced friction and external forces.
This equation is model independent and can be used to
determine the parameters of AFMs, e.g., the Gilbert damp-
ing G2 and the homogeneous exchange constant a, which
are usually difficult to identify in experiments.
In Eq. (5), Mij is the effective mass arising from the

exchange interaction between the spins. The total force
inducing motion of the collective coordinates, Fi ¼ Fi

X þ
Fi
J þ Fi

H, is a sum of the exchange force, the current-
induced force, and the external field force:

MijðbÞ ¼ 1

a�2

Z
dV@bin � @bjn; (6a)

Fi
XðbÞ ¼

Z
dV@bin � fn; (6b)

Fi
JðbÞ ¼

Z
dV

�
�@bin � ðJ � rÞn

þ �þG1�

a�
@bin � ð _J � rÞn

�
; (6c)

Fi
HðbÞ ¼

1

a�

Z
dV _H � ðn� @binÞ: (6d)

More generally, Eq. (6b) can also be expressed as Fi
X ¼

@biU, to include the effective material-specific forces

which act on the AFM through the exchange interaction
and magnetic anisotropy. Equation (6c) includes the reac-
tive and dissipative current-induced forces, both of which
are important for the dynamics of the collective coordi-
nates bi. Equation (6d) represents the response to an
external magnetic field. Note that in the linear response
regime, only time varying external magnetic fields affect
the dynamics of the collective coordinates in AFMs, in
contrast to the situation for ferromagnets [13], making the
collective motion in AFMs more resistant to stray fields.
We now apply the general collective coordinate descrip-

tion Eq. (5) to an isotropic one-dimensional antiferromag-
netic texture, an orientational domain wall [16], in which
the antiferromagnet is pinned in the x and z directions at
z ¼ 0 and z ¼ �, respectively. The staggered field nðz; tÞ
varies slowly in the z direction (see Fig. 1). The pinning
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can be achieved by placing the antiferromagnet in contact
with ferromagnets, as schematically shown in Fig. 1(c).
In general, the staggered field can be expressed in
terms of two angles � and �: nðz; tÞ ¼ fcos� cos�;
cos� sin�; sin�g. In equilibrium � ¼ �eq and � ¼ 0, with

�eqðzÞ ¼ 	z=ð2�Þ. Without loss of generality, we assume

that the out-of-plane angle � remains zero when a current
passes through the system, which gives an antiferromag-
netic texture varying in the x-z plane only.

In the steady state regime with a constant current along
the z direction J ¼ Jẑ the solution of Eq. (4) is �sðzÞ ¼
	
2 ð1� eQzÞ=ð1� eQ�Þ, where Q ¼ �J=A. As a collective

coordinate representing the softest mode, we use the de-
viation of the texture center r from its equilibrium position
z0, which is the point where the x component of the
staggered field vector equals the z component, �ðrÞ ¼
	=4. In equilibrium, when there are neither applied cur-
rents nor external fields, the center coordinate is z0 ¼ �=2.
Motivated by the steady state solution �s, expanding for
small Q in the low current regime to the linear order in the
deviation r from equilibrium, we use Eq. (5) with the
ansatz that the staggered field can be fully described by
the sine and cosine of a function �ðz; rÞ:

�ðz; rÞ ¼ 	z

2�

�
1þ 4ðz� �Þr

�2

�
: (7)

Using this ansatz and the equation of motion Eq. (5), we
find that the deviation from equilibrium r obeys

M €rþ � _rþM!2
0r ¼ FJ þ FH; (8)

where M ¼ �=ða�2Þ is the effective mass, !0 ¼
�ð10AaÞ1=2=� is the natural frequency of the system, and

� ¼ �G2=� is the damping coefficient. There are two
contributions to the external forces: one from the current,
FJ ¼ �5�½�J þ ð�þ �G1Þ _J=ða�Þ�=4, and the other
from time-varying external fields, FH ¼ 5�2 _Hy=ð2	a�Þ.
For dc currents, the reactive (adiabatic) force parametrized
by � plays no role, and only the dissipative (nonadiabatic)
force parametrized by � is important for the texture dy-
namics. When the driving forces are independent of time,
Eq. (8) describes damped harmonic oscillations about a
new perturbed position rnew ¼ ��J�2=ð8AÞ. This solution
is valid as long as rnew 	 �=2. Hence, using �� ¼
�Jd=A ¼ �0:005, the approach works well for systems
with lengths up to several hundred lattice constants.
Numerical values for the natural frequency can be esti-

mated for antiferromagnetic metals. For example, in FeMn,
the inhomogeneous exchange constant is A ¼ 0:94�
10�14 J=m [17], the lattice constant is dFeMn ¼ 3:6 �A
[18], and the magnetic moment per sublattice is 1:65
B,
with 
B being the Bohr magneton, giving a natural fre-
quency of approximately 1 GHz for a FeMn texture with a
length of 100 lattice constants.
In Fig. 2, the solution of the time-dependent equation of

motion Eq. (8) for r has been compared to numerical
results of a micromagnetic simulation of the coupled equa-
tions Eqs. (2) and (3), with the boundary conditions
described in Fig. 1. The equations were first written in
dimensionless form by scaling the z axis with the lattice
constant d, and the time axis with ~t ¼ ð�alÞ�1. Other
dimensionless quantities, as well as the numerical values
used in the simulation presented in Fig. 2, are summarized
in Table I.
Figure 2 shows that the complex spatiotemporal dynam-

ics of the antiferromagnetic texture can be described by
the motion of the single soft mode r. Fitting the simple
equation of motion Eq. (8) to experimental data, e.g., from

Numerics
Eq. 8
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FIG. 2 (color online). Transient response of the deviation r
from the equilibrium position z0 ¼ �=2, after a constant current
has been applied at time t ¼ 0. The antiferromagnetic texture
shows damped oscillations around a new perturbed position. The
magnitude of the perturbation depends on the system length and
the current density. The inset shows the response when the
current density is tripled.

(a)

(c)

(b)

FIG. 1 (color online). A one-dimensional antiferromagnetic
texture pinned at a relative angle of 90� in the left and right
reservoirs. (a) shows the equilibrium orientation of the staggered
field, (b) depicts how a current J exerts a torque on the staggered
field vector, forcing the center coordinate z0 to be displaced by r,
and (c) shows schematically a setup of an AFM between two
pinning ferromagnets.
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AMR measurements, can provide good estimates of the
phenomenological parameters in AFMs. The generality of
Eq. (5) also makes the collective coordinate approach a
powerful tool for investigating the dynamics of more com-
plex antiferromagnetic textures with more than a single
soft mode.

The staggered dynamics represented by the center coor-
dinate r can be measured via the AMR effect. The magni-
tude of the AMR in bulk AFMs is not known, but since the
tunneling AMR [3] is significant, we believe its bulk value
will be too. A plausible assumption is that the simplest
possible phenomenological model of AFM AMR is similar
to the AMR in ferromagnets, but with the AMR depending
on the orientation of the staggered field rather than the
magnetization: �ðnÞ ¼ �0 þ �aniðn � ẑÞ2, where �0 is the
isotropic resistivity and �ani is the anisotropic resistivity.
Integrating the resistivity over the system, using the ansatz
in Eq. (7), and expanding to linear order in r, gives the
effect of the antiferromagnetic texture on the resistance as
RðtÞ ¼ R0 þ �ani½�=2� 8rðtÞ=	2�. Therefore, it should be
possible to observe the effects of both dc and ac currents.
For dc currents, the total resistance RðtÞ will be enhanced
or reduced depending on the current direction. For ac
currents, by sweeping the frequency, one should observe
enhanced deviations of the resistance when the frequency
equals the natural frequency of the texture. This setup
offers the possibility of measuring the effect of the
current-induced torque on the staggered field, a phenome-
non which is, in general, difficult to observe
experimentally.

We can also apply our collective coordinate approach to
an AFM domain wall described by the Walker ansatz:

tanð�wÞ ¼ eðz�rwÞ=�w . Here we introduce the easy axis an-

isotropy Kz, defining the domain wall width as �w ¼ffiffiffiffiffiffiffiffiffiffiffiffi
A=Kz

p
. To the best of our knowledge, the experimental

values of Kz for antiferromagnetic materials are still not
available. However, anisotropy energies in AFMs can be
comparable to, or even stronger than, those in ferromagnets
since they often involve heavy elements with a strong spin-
orbit interaction [19]. We also reintroduce the out-of-plane
tilt angle�w, and use the center of the domain wall rw,�w,
and the domain wall width �w as the three collective
coordinates. In agreement with the simplified treatment
in Refs. [11,20], by applying a constant current, the domain
wall motion gradually relaxes to a steady state, where the

wall moves with the constant velocity _rw � ���J=G2.
Our approach shows that the out-of-plane tilt angle is a
hard mode, which can only be excited by a time varying
external magnetic field. This is very different from the
motion of domain walls in ferromagnets, where a moving
domain wall also has a finite tilt angle [21]. Additionally, in
the linear response regime, there is no distortion of the
domain wall width for AFMs.
In conclusion, we have derived equations of motion for

the collective coordinates corresponding to soft modes of
antiferromagnetic textures to the linear order in currents,
magnetization, and external magnetic field. In contrast to
ferromagnets, the dynamics are second order in time de-
rivatives, e.g., the effective particles described by the soft
coordinates acquire a mass, and have no first-order contri-
bution from time-independent external magnetic fields. We
have applied our theory to a one-dimensional model of a
slowly varying antiferromagnetic texture pinned at 90� at
the edges, and have found the natural frequency and devi-
ations of the center coordinate in terms of the system
parameters. The results show that the dissipative (nonadia-
batic) current-induced torque is crucial for the dynamics of
the antiferromagnetic textures.
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