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Using the density matrix renormalization group, we determine the phase diagram of the spin-1=2

Heisenberg antiferromagnet on a honeycomb lattice with a nearest-neighbor interaction J1 and a

frustrating, next-nearest-neighbor exchange J2. As frustration increases, the ground state exhibits Néel,

plaquette, and dimer orders, with critical points at J2=J1 ¼ 0:22 and 0.35. We observe that both the spin

gap and the corresponding order parameters vanish continuously at both the critical points, indicating the

presence of deconfined quantum criticality.
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Introduction.—Frustrated magnetism on the honeycomb
lattice has lately received tremendous interest. This interest
stems from sign-problem-free quantum Monte Carlo stud-
ies suggesting the presence of a spin-liquid phase in the
honeycomb Hubbard model [1,2]. Approaching from the
strong coupling side, the physics for some intermediate
values of the Hubbard interaction U can be described by
the spin-1=2 Heisenberg model characterized by an anti-
ferromagnetic interaction J1 between neighboring spins and
a frustrating, next-nearest-neighbor exchange J2 [3]. This
J1-J2 model has emerged as an interesting Hamiltonian in
its own right and as relevant to the physics of honeycomb
lattice materials such as Bi3Mn4O12ðNO3Þ [4–6]. In this
model, when the frustrating coupling J2 is small, the well-
knownNéel ordered state is stable. But, at a critical value of
� ¼ J2=J1, it gives way to another, possibly liquid, phase.
While all studies so far agree upon the presence of a phase
transition, the nature of this intermediate phase that is
reached by the transition out of the Néel state is heavily
debated. The intermediate phase has been identified as a Z2

spin liquid by some [7–9] and as a plaquette resonating
valence bond (pRVB) state, breaking translational symme-
try, by others [10–12]. A recent variational calculation
argues instead that the intermediate state does not have
plaquette order [13]. Upon further increasing the frustration
parameter �, all studies show a second transition into a
ground state that breaks lattice rotational symmetry butmay
or may not have magnetic order.

We analyze this complex situation by formulating and
answering four succinct fundamental questions on the
J1-J2 honeycomb Heisenberg model. (i) As to the Néel
state, do quantum fluctuations tend to stabilize or destroy
it? In other words, does Néel order vanish above or below
the classical threshold of � ¼ 1=6? (ii) What is the nature
of the intermediate state? Is it a liquid state or does it have
plaquette order? (iii) What is the ground state for large �?
Does it have magnetic order? (iv) What is the nature of the
two phase transitions? Do the order parameters develop

discontinuously or continuously across the quantum criti-
cal points?
We use nominally exact two-dimensional density matrix

renormalization group (DMRG) calculations to settle these
issues and establish that (i) Néel order is stabilized beyond
the classical limit, up to �c1 ¼ 0:22, (ii) the intermediate
state has weak plaquette order with f-wave symmetry, and
(iii), for �c2 > 0:35, the ground state has dimer order and
breaks lattice rotational symmetry. These results are sum-
marized in the phase diagram shown in Fig. 1. Moreover,
we find that, within numerical precision, (iv) both the spin
gap and the relevant order parameters vanish continuously,
at both critical points�c1 and�c2. This implies that, even if
two different symmetries are broken on either side of �c,
the transition is not first order, as one would expect from a
Ginzburg-Landau-type theory. We have two second-order
transitions involving Néel, plaquette, and dimer phases; the
critical theories for these transitions must be unusual and
not described in terms of order parameter fields. This
indicates instead the presence of two deconfined quantum
critical points [14,15].
Frustrated honeycomb heisenberg model.—The

Hamiltonian corresponding to the J1-J2 Heisenberg model
on a honeycomb lattice is
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FIG. 1 (color online). Phase diagram of the spin-1=2
Heisenberg antiferromagnet on the honeycomb lattice with a
nearest-neighbor interaction J1 and a frustrating, next-nearest-
neighbor exchange J2 as obtained from DMRG calculations.
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H ¼ J1
X

hiji
Si � Sj þ J2

X

hhijii
Si � Sj; (1)

where hiji and hhijii denote nearest-neighbor and next-
nearest-neighbor sites i and j, respectively, and � ¼
J2=J1 parametrizes the strength of the frustration. We
consider antiferromagnetic coupling: J1, J2, and � are all
positive. The model is well understood in the classical
limit: At the critical value of � ¼ 1=6, the ordering wave
vector smoothly moves away from the Néel wave vector to
give an incommensurate spiral [16]. This spiral state exhib-
its interesting order-by-disorder physics [6,16]. However,
in the extreme quantum limit of S ¼ 1=2, the phase dia-
gram is not well established [7–13]. We use the DMRG
method to resolve this issue.

Method.—Our DMRG is truly two dimensional—we
consider clusters with geometries chosen to be conducive
to various ordering patterns. It is well known that one can
lift the degeneracy of wave functions by taking some or all
edges to be open. We use appropriate edge geometries as
weak perturbing fields to induce symmetry breaking in the
ground state. By performing measurements in the center of
the cluster, one can estimate the order parameter induced
by the edge geometry. Upon systematically increasing the
size of the system, the effect of the edges becomes pro-
gressively weaker, and thus, by scaling to the thermody-
namic limit, we can obtain the value of the order parameter
in the ground state. In all cases, we have obtained smooth
finite-size scaling, which indicates that our results exhibit a
steady convergence to the thermodynamic limit.

As described below, we have used a variety of cluster
geometries appropriate for each phase. Note that the per-
formance of DMRG calculation is equally stable for any
ordered phase at �<Oð1Þ. We study several cluster sizes
with a total number of sites up to 96 and keep up to 6000
density matrix eigenstates in the renormalization proce-
dure. We perform �10 sweeps until the ground-state en-
ergy converges within an error of �10�5J1. All quantities
calculated in this Letter have been extrapolated to the limit
n ! 1, where n is the number of retained eigenstates.

Quantum stabilization of Néel order.—Wefirst determine
the value of� at which Néel order vanishes and establish the
role of quantum fluctuations in this process. Naı̈vely, one
expects quantum fluctuations to destabilize Néel order for
S ¼ 1=2, thereby pushing the �c1 to a value below 1=6. On
the other hand, as the Néel state is collinear, quantum fluc-
tuations may prefer the Néel state over a competing spiral
phase and push �c1 above 1=6. Even though various
approaches have been used to address this issue, a consistent
picture has not emerged so far. Calculations which support
the hypothesis that �c1 < 1=6 include linear spin-wave the-
ory [17], a one-loop renormalization group study of the
nonlinear sigma model [18], functional renormalization
group analysis [19], and a variational Monte Carlo approach
using resonating valence bond and Huse-Elser wave func-
tions [9]. On the other hand, approaches which support the

�c1 > 1=6 hypothesis include exact diagonalization [10,11],
Schwinger boson mean-field theory [17,20], series expan-
sions [21], coupled-cluster calculations [12], and a varia-
tional Monte Carlo calculation using entangled plaquette
states [13].
The DMRG results presented in Fig. 2 conclusively

establish that quantum fluctuations stabilize Néel order
beyond the classical regime of stability. We have used two
cluster geometries—diamond and hexagonal [Figs. 2(a) and
2(b)]. One should be aware that periodic boundary condi-
tions in some direction artificially enhance or diminishNéel
correlations due to short-range periodicity. This finite-size
effect decays only slowly with increasing cluster size. To
circumvent this issue, we keep all edges of the clusters
open and measure the following order parameter as a func-
tion of �:

m2ðNÞ ¼ 1

N

�X

i

ð�1Þi ~Si
�
2
: (2)

As shown in Fig. 2, this quantity shows good finite-size
scalingwith terms proportional to 1=L and 1=L2, whereL is
the linear extent of the system. In the unfrustrated situation
(� ¼ 0), the staggered moment m in the thermodynamic
limit comes out to be 0:2857� 0:039, which is consistent
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FIG. 2 (color online). Finite-size scaling of the Néel order
parameter. (a) Diamond cluster with L ¼ 3. (b) Hexagonal clus-
ter with L ¼ 3. (c),(d) Finite-size scaling of the Néel order
parameter defined in Eq. (2) for diamond and hexagonal clusters.
(e) Scaled Néel order parameter as a function of � ¼ J2=J1 for
diamond (closed red circles) and hexagonal (open blue circles)
clusters.
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with previously estimated values of 0.2677(6) and 0.270
obtained from quantum Monte Carlo calculations [22] and
exact diagonalization [11], respectively. As � increases,
the obtained value of the Néel order parameter steadily
decreases. At the critical value of �c1 � 0:22, we observe
thatNéel order vanishes in a continuous transition, as shown
in Fig. 2(e). Both diamond and hexagonal cluster geome-
tries give the same value of �c1, which signals the robust-
ness of our result. Thus, quantumfluctuations stabilize Néel
order significantly beyond the classical threshold.

Nonlinear spin-wave analysis.—The excitations of the
Néel state are well captured by spin-wave theory, which
treats quantum fluctuations using an expansion in powers
of S. Linear spin-wave theory with OðS1Þ terms gives
�c1 � 0:11 [17], which is below the classical threshold.
To reconcile this with the observed DMRG phase bound-
ary, we take into account the quartic spin-wave interaction
terms of order OðS0Þ. We treat the interactions at mean-
field level (for details, see the Supplemental Material [23])
and observe that the Hartree-Fock parameters merely re-
normalize the strength of the J1 and J2 couplings. This
effectively scales the frustration parameter � ¼ J2=J1
down so that the Néel state only becomes unstable beyond
�� 0:214. The quartic terms thereby provide a significant
correction to the critical frustration ratio. The precise value
of �c1 may depend upon further corrections beyond quartic
order. Nevertheless, nonlinear spin-wave analysis confirms
the strong tendency for quantum fluctuations to stabilize
Néel order beyond the classical limit.

Intermediate plaquette phase.—Weobserve the presence
of an intermediate pRVB phase, as suggested previously
[10–12,24], for 0:22 & � & 0:35. In an earlier report, we
had suggested f-wave pRVB order based on a plaquette

operator analysis [25]. This state consists of a
ffiffiffi
3

p � ffiffiffi
3

p
arrangement of plaquettes, as shown in Fig. 1—each shaded
plaquette is in an antisymmetric combination of the two
Kekulé singlet covers. To test for plaquette order in the
ground state, we choose the cluster geometry shown in
Fig. 3(a) which favors plaquette order (this also favors
columnar dimer order [26], but we have explicitly checked
that it does not occur). This choice of boundary conditions
acts as a weak field which induces plaquette ordering, as
shown by the shaded hexagons in Fig. 3(a). Wemeasure the
ordering amplitude at the center of the cluster, away from
the boundaries. To determine the pRVBorder parameter, we
first define the two single-plaquette states jai and jbi—the
twoKekulé singlet covers of a single hexagon. The f-wave,
antisymmetric, pRVB wave function is given by j�i �
jai � jbi, up to a normalization constant. The order pa-
rameter corresponding to pRVB order is the projection onto

the antisymmetric wave function: ÔpRVB ¼ j�ih�j, acting
on a shaded plaquette in Fig. 3(a).We use the closely related
plaquette-flip operator which flips the two Kekulé covers:

P̂ ¼ �jaihbj � jbihaj: (3)

If the plaquette is in the pure j�i state, this operator has an
expectation value of 5=4 (see the Supplemental Material
[23] for details). For the case of s-wave pRVB order
(a symmetric combination of singlet covers), this expecta-
tion value would be negative.
To measure pRVB order at the cluster center, we define

hP̂centrali as the average of hP̂i over three plaquette ordering
hexagons at the center of the system. As seen from
Fig. 3(a), one cannot always identify a single central pla-
quette for a given L. So, we average over three plaquettes

at the center of the system. Finite-size scaling of hP̂centrali
provides the strength of pRVB order in the limit of infinite
system size. Consistent with f-wave pRVB order, this
expectation value is positive for 0:22 & � & 0:35.

Figure 3(c) shows the finite-size scaling of hP̂centrali, which
indeed scales to a positive value in the thermodynamic
limit. We also find a finite spin gap that is consistent withffiffiffi
3

p � ffiffiffi
3

p
plaquette ordering. We note, however, that strong

quantum fluctuations reduce the amplitude of plaquette

ordering: hP̂N¼1
centrali reaches a maximum value of �0:43

compared to 5=4 for the case of pure pRVB order. The
strength of pRVB order can also be characterized by �p, the
amplitude of the projection onto the j�i plaquette wave
function as defined in Ref. [25]. For decoupled hexagons in
the regime 0<�< 0:5, there is perfect pRVB order with
�p ¼ 1. Our DMRG results indicate that, in the honeycomb
J1 � J2 model, pRVB order is strongly affected by quan-
tum fluctuations and reduced to �p & 0:34. To confirm the
existence of pRVB order, we also measure the spin gap
which is the energy difference between the first triplet
excited state and the singlet ground state,

�ðLÞ ¼ E1ðLÞ � E0ðLÞ; � ¼ lim
L!1�ðLÞ; (4)

where EnðLÞ is the nth eigenenergy (n ¼ 0 corresponds to
the ground state) of the system size L. The scaling analysis

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6
J2 /J1 = 0.20
J2 /J1 = 0.25
J2 /J1 = 0.30
J2 /J1 = 0.35

1/L

si
ng

le
t-

tr
ip

le
tg

ap

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

J2 /J1

extrapolated values

gap     9

0 0.1 0.2 0.3 0.4 0.50

1

J2 /J1 = 0.20
J2 /J1 = 0.25
J2 /J1 = 0.30
J2 /J1 = 0.35

P
ce

nt
ra

l

1/L

Pcentral

(a)

(b)

(c)

(d)
L

L+1

1

2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27 28

29

30

31

32

36

33

35

34

FIG. 3 (color online). (a) Cluster geometry with L ¼ 3 used to
establish the presence of plaquette order. (b),(c) Finite-size
scaling of the spin gap and hP̂centrali—a measure of pRVB
amplitude. We find good scaling with polynomials up to cubic
order in 1=L. (d) Spin gap and hP̂centrali in the thermodynamic
limit.

PRL 110, 127203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 MARCH 2013

127203-3



of the finite-size data is shown in Fig. 3(b), and the results
extrapolated to the thermodynamic limit are plotted in
Fig. 3(d). We observe that the gap is finite only in the

region of positive hP̂centrali.
Dimer phase.—At larger values of J2, the presence of a

dimer state which breaks lattice rotational symmetry has
been proposed previously [16,24]. This state has been
variously called the staggered valence bond solid or the
nematic valence bond solid state in literature. We establish
that this state occurs in the phase diagram for � * 0:35
using the cluster geometry in the inset of Fig. 4(a). We use
open boundary conditions in the x direction and periodic
boundary conditions along the y direction, thus breaking
the degeneracy associated with threefold lattice rotational
symmetry. The cluster favors bond ordering with horizon-
tal dimers, as shown in Fig. 4(a). We first measure the
breaking of lattice rotational symmetry by evaluating the
expectation value of

R̂ ¼ SA � SB � SB � SC; (5)

where the sites A, B, andC are chosen close to the center of
the system [see Fig. 4(a)]. We determine the expectation

hR̂i while systematically increasing system size. If the true
ground state breaks lattice rotational symmetry, we expect
this quantity to scale to a nonzero value in the thermody-
namic limit. For finite-size scaling, we first take Lx ! 1
followed by Ly ! 1. This sequence of limits ensures that

there is no degeneracy arising from lattice rotations. We
obtain smooth finite-size scaling by restricting ourselves to
even values of Ly, as shown in Fig. 4. Including odd Ly

values leads to small oscillations, preventing smooth
scaling.

Figure 4(b) shows that hR̂i scales to a nonzero value for
� * 0:35, clearly establishing broken lattice rotational
symmetry in the ground state. However, this is consistent
with two ground state candidates—dimer order or mag-
netic stripe order [11]. To distinguish between these two,
we measure the spin gap. The finite-size scaling for the
spin gap is shown in Fig. 4(c). While first increasing Lx, we
find that the spin gap scales as 1=L2

x. Later, upon increasing
Ly, we find that the spin gap scales as a power law—1=L�,

with �� 1:5. The error bars shown in Fig. 4(c) are asso-
ciated with the choice of � to fit the data points. For 0:35 &
� & 0:6, the spin gap scales to a nonzero value robustly.
For � * 0:7, it is not possible to determine reliably
whether the spin gap closes. The nonzero spin gap clearly
indicates dimer order and rules out magnetic order.
Nature of phase transitions.—We have clearly demon-

strated the presence of Néel, plaquette, and dimer orders.
Naı̈vely, one expects first-order quantum phase transitions
(QPTs) between these phases as they break different sym-
metries. Our DMRG results, however, evidence a continu-
ous transition out of the Néel phase: As can be seen from
Fig. 2, the Néel order parameter vanishes continuously at
�c1 ¼ 0:22. This implies the presence of an exotic decon-
fined QPT [12,27]. Approaching from the Néel side, tripled
monopoles are allowed, leading to a field theory of the type
discussed in Refs. [14,28], whereas, approaching from the
pRVB side, the quantum field theory governing this decon-
fined transition must involve spinons coupled to vortices in
the pRVB order parameter [26]. This is an exciting prop-
osition, as a deconfined QPT in a model with realistic
Heisenberg interactions has not been identified before.
Surprisingly, DMRG results suggest that the plaquette-
dimer transition is also continuous. As seen from
Fig. 3(d) and Fig. 4, at �c2 ¼ 0:35, there is no evidence
for either plaquette ordering or breaking of lattice rota-
tional symmetry. More work is needed to study the vicinity
of these transitions, to extract critical exponents, and to
rule out weak first-order behavior or the presence of a small
intervening phase. If there is indeed a continuous transition
between dimer and plaquette phases, it would be yet an-
other Landau-forbidden QPT within the same model. The
field theory corresponding to this transition would be of
immense interest.
We thank Subir Sachdev and Kai Schmidt for stimulat-

ing comments and Ioannis Rousochatzakis for many useful
discussions.
Note added.—During the preparation of this manuscript,

a DMRG study in Ref. [29] reported a similar sequence of
Néel, plaquette, and dimer orders as well as the continuous
nature of the transition out of the Néel phase.
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M. Mambrini, and A.M. Läuchli, Phys. Rev. B 84, 024406
(2011).

[12] R. Bishop, P. Li, D. Farnell, and C. Campbell, J. Phys.
Condens. Matter 24, 236002 (2012).

[13] F. Mezzacapo and M. Boninsegni, Phys. Rev. B 85,
060402 (2012).

[14] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M.
Fisher, Science 303, 1490 (2004).

[15] C. Xu, Int. J. Mod. Phys. B 26, 1230007 (2012).
[16] A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti,

Phys. Rev. B 81, 214419 (2010).
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