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We report noninvasive single-charge detection of the full probability distribution Pn of the initialization

of a quantum dot with n electrons for rapid decoupling from an electron reservoir. We analyze the data in

the context of a model for sequential tunneling pinch-off, which has generic solutions corresponding to

two opposing mechanisms. One limit considers sequential ‘‘freeze-out’’ of an adiabatically evolving

grand canonical distribution, the other one is an athermal limit equivalent to the solution of a generalized

decay cascade model. We identify the athermal capturing mechanism in our sample, testifying to the high

precision of our combined theoretical and experimental methods. The distinction between the capturing

mechanisms allows us to derive efficient experimental strategies for improving the initialization.
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The fast formation of quantum dots (QDs) out of a two-
dimensional electron system (2DES) constitutes an open
problem within the field of nanoscale electronics [1]. A
highly reliable initialization of such dynamic QDs is a key
ingredient in devices for quantum information processing
[2,3], nanoelectronics [4,5], or single-electron current
sources [6–8]. The latter device type has been considered
as a potential primary measurement standard of electrical
current within a modernized international system of units
(SI) [9,10]. As dynamic QDs constitute one of the most
promising single-electron sources [8], understanding the
capturing process will be of broad fundamental and tech-
nological interest.

The outcome of the initialization is characterized by a
probability distribution Pn for trapping exactly n electrons
in the QD. At high repetition rate deviations from a low-
dispersion distributionmay be caused, e.g., by backtunneling
[11–13] or nonadiabatic excitations [14–16]. A decay cas-
cade model [13] has been proposed recently to predict Pn

in dynamic QDs. It has become popular for benchmarking
QD-based current sources [17–20], which transfer electrons
through dynamic QDs at a sufficiently high repetition rate.
Alternative mechanisms, such as sudden decoupling from
thermal equilibrium [21] have been proposed. Experimental
distinction between the capturing mechanisms is the key
towards systematic improvement of the initialization preci-
sion. So far Pn has not been measured with sufficient accu-
racy to allow this distinction. The first two cumulants of Pn

have been extracted from current and noise measurements
[22–24]. Furthermore, single charge detection [21,25] has
beenused todetermine partial informationon the distribution
of QD population-depopulation events.

Herewe present noninvasive charge detection tomeasure
the full probability distribution Pn. Considering the integer

charge on the QD to be the only degree of freedom out of
equilibrium, we derive theoretically two generic limits for
Pn: a (generalized) frozen grand canonical distribution and
a rate-driven athermal limit (generalizing the decay cascade
model [13]). Both limits may be hard to distinguish experi-
mentally for Pn � 1, which is the relevant regime for most
applications. Yet, our experimental data for Pn allow us to
distinguish the two limits and to conclude that the dynamic
QD initialization is consistent with the athermal distribu-
tion. Based on these findings, strategies for optimum high
fidelity initialization are presented.
The device under investigation is shown in Fig. 1(a), with

four QD structures in series consisting each of three gates
crossing a 2DES within a AlGaAs=GaAs heterostructure.
The 2DES is located 90 nm below the surface, the wet-
etched channel is 800 nm wide. Similar QD structures have
previously been used as single-electron current sources
[7,26]. We use the left QD as the dynamic QD, which
captures electrons from source (S) and afterwards emits
them to the node (dotted region) for charge detection. The
voltage on one gate of the rightmost QD, Vbarrier, controls
the transparency of the node to the drain lead (D). All other
gates are grounded and do not affect the circuit. Close to
the node two single-electron transistors (SET) based on
Al-AlOx-Al tunnel junctions are placed as charge detectors
(Det1 or Det2). They are operated at fixed voltage bias,
using the current as detector signal. To increase the coupling
between the potential of the node and the metallic detectors
both are capacitively coupled by H-shaped floating gates.
Correlating the detector signals allows us to distinguish the
electron signal from background charge fluctuations, as
both detectors are coupled to the same island. All measure-
ments are performed in a dry dilution cryostat at nominal
temperature of about 25 mK.
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Figure 2(a) shows the sequence of QD initialization and
charge transfer to the node schematically. An isolatedQD (ii)
is formed between the two leftmost gates by applying
sufficiently negative dc voltages, VGS and VGD (see Fig. 1).
Initialization (i) of the QD is achieved by applying the first
half cycle of a sinusoidal pulse superimposed onto the source
gate, so that the source barrier becomes transparent. During
the subsequent rise of the source barrier a certain charge state
of the isolated QD (ii) with n electrons is established with

probability Pn. In the second half cycle of the sinusoidal
pulse (iii) the left barrier is raised further. As the source
barrier also couples to the QD potential, i.e., acts as plunger
gate [26], one can ensure complete unloading of the QD
charge to the node where it can be detected noninvasively.
The cycle is repeated three times during which charges

accumulate on the node. Afterwards, opening the right
barrier resets the node charge, before the next three cycles
start. Example traces of the SET signals are shown in
Fig. 1(b). The bold black vertical lines represent resets of
the node’s charge state. The stochastic nature of this pro-
cess is represented by the different initial states after each
reset. Each thin green vertical line represents a combined
charge capture and transfer pulse. Because of the discrete-
ness of node charges, we can assign levels (horizontal
lines) derived from a histogram of the detector trace to
each interval between pulses. These are then compared to
extract the number of captured electrons in this specific
cycle [27]. Because of the limited bandwidth of the SET
detectors (fbw � 600 Hz) the pulses are delayed by 40 ms
each. The pulse itself consists of a single period of a sine
with frequency fpump � 40 MHz.

The voltage VGD allows us to adjust the depth of the QD
potential and thereby to tune the average number hni ¼P

nnPn of captured electrons [28]. Figure 3 shows Pn as
measured by charge detection as a function of VGD. The
probabilities of charging the QD with up to 4 electrons
are well resolved. For n ¼ 1 the initialization accuracy
reaches 99.1% for VGD � �192:5 mV. The probability to
charge the QDwith 4 electrons with one initialization pulse
approaches 80% for VGD � �168 mV. We will analyze
the VGD dependence of Pn further below. In the following,
a theoretical framework is established later allowing us
to relate the measured distribution to the underlying cap-
turing mechanisms.
Recent theoretical arguments [29] and experimental evi-

dence [16] suggest that nonadiabatic quantum excitations
in the source lead and in the dynamic QD, respectively, can
be neglected for a sufficiently slow capture process. This
warrants a Markovian approximation to the perturbative

FIG. 2 (color online). (a) Sequence of schematic potential
landscapes during capturing from source (i), isolation (ii), and
emission to drain (iii), respectively. Shading indicates tunneling
rates �n, related to the area under the curve. (b) Evolution of the
tunneling rate �n and energy �n of a particular charge state for
two different VGD voltage settings.

(a)

(b)

FIG. 1 (color online). (a) False-color electron microscopy im-
age of a device. The upper half shows the semiconducting part
consisting of an 800-nm wide channel (light blue) crossed by top
gates (yellow). The QD is formed by the leftmost group of top
gates, between source (S) and drain (D). The light-gray parts in
the lower part form the SETs labeled Det1 (red) and Det2 (blue),
respectively. FG labels the floating gates coupling the detectors
to the channel. (b) Detector signals of the charge transfer
sequence, as explained in the main text.

FIG. 3 (color online). Probabilities to capture n ¼ 0 . . . 4 elec-
trons per cycle derived by counting as a function of VGD. The
error bars indicate the 95% confidence interval.
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treatment of uncorrelated tunneling events [30,31] with
time-dependent rates [26,32,33]. The ‘‘disequilibration’’
and eventual freezing of PnðtÞ can thus be described by a
general master equation:

_PnðtÞ ¼ Pn�1ðtÞWþ
n�1ðtÞ � PnðtÞW�

n ðtÞ þ Pnþ1ðtÞW�
nþ1ðtÞ

� PnðtÞWþ
n ðtÞ; (1)

where W�
n are the instantaneous rates for adding (þ) or

removing (�) an electron to or from the QD, averaged
over all degrees of freedom except n. Equation (1) holds
for n � 1; P0ðtÞ is deduced from normalization. We define
�nðtÞ as

e��nðtÞ � W�
n ðtÞ=Wþ

n�1ðtÞ; (2)

with ��1 � kT being the product of temperature and
Boltzmann’s constant. If the time dependence of rates
W�

n ðtÞ is quasistatic, then Eq. (2) is the expression of
thermodynamic detailed balance, �n ¼ �n ��n�1 is the
electrochemical potential of a state with n electrons, and is
equal to the differences in the thermodynamic potentials
[31] �n � F n þ En � nEF, where F n is the canonical
free energy of the internal degrees of freedom on the QD,
En is the electrostatic interaction energy and EF � 0 is the
Fermi level in the source lead. Defining the total rate for
charge exchange in the n $ n� 1 transition as �nðtÞ �
W�

n ðtÞ þWþ
n�1ðtÞ allows us to write Eq. (1) in the form

_PnðtÞ ¼ ��n½ �fð�nÞPnðtÞ � fð�nÞPn�1ðtÞ�
þ �nþ1½ �fð�nþ1ÞPnþ1ðtÞ � fð�nþ1ÞPnðtÞ�; (3)

where fðxÞ ¼ 1=ð1þ e�xÞ is the Fermi distribution in the
source and �f � 1� f.

We will now apply Eq. (3) to the decoupling process
sketched in Fig. 2(a-i)–(a-ii). The end of the decoupling
stage (ii) is characterized by �nðtfÞ ¼ 0. The exact time

dependencies of �nðtÞ and �nðtÞ between an initial time
moment t0 and tf are impossible to predict without a more

specific microscopic model for the QD. However, we can
identify two relevant time moments for each transition
n� 1 $ n: one for the onset of backtunneling, tbn, and
the other one for decoupling (detailed balance breakdown),
tcn, described in Fig. 2(b). It shows schematically the evo-
lution of �n (blue) and �n (green) with time for the
initialization process with two different values of VGD. t

b
n

is defined by the crossing of the Fermi level, �nðtbnÞ ¼ 0,
while tcn is set by the average number of remaining tunnel-

ing events being of order one,
Rtf
tcn
�nðtÞdt ¼ 1 (shaded area

under the curve). Positive charging energies and the raising
bottom of the confining potential well imply tbnþ1 < tbn
while in the relevant regime we expect the higher n states
to be less stable, �nþ1ðtÞ> �nðtÞ (at least for t > tbn) and
therefore generally tcnþ1 > tcn. Sufficiently long equilibra-
tion before the decoupling implies that tcn is well defined
for all n for which the Coulomb blockade holds.

Fluctuations in the capture probability (i.e., Pn) will be
strongest for n that have tcn and tbn close to each other [29].
We proceed by solving Eq. (3) for Pn � PnðtfÞ in

two limits (thermal versus athermal) that correspond to
opposing physical mechanisms of charge capture. We
assume that initially the charge on the QD is equilibrated,

corresponding to a grand canonical distribution, Pnðt0Þ /
e���nðt0Þ. As long as �nðtÞ remain sufficiently large, the
solution PnðtÞ at t > t0 closely follows the instantaneous
equilibrium. This can be seen directly from Eq. (3): large
�n pin the terms in square brackets to zero and the evolving
distribution of n obeys detailed balance adiabatically,

PnðtÞ � e��nþ1ðtÞPnþ1ðtÞ: (4)

In deriving the thermal limit we consider sudden decou-
pling, i.e., �nþ1ðtÞ dropping to 0 so fast that Eq. (4) must
hold up to t ¼ tcnþ1, but once t > tcnþ1 the right-hand side
of Eq. (3) is effectively zero and PnðtÞ freezes (i.e., remains
constant). With this sudden approximation, the asymptotic
value Pn ¼ Pnðtcnþ1Þ is set by a ‘‘curtailed’’ grand canoni-
cal distribution that excludes already frozen charge states
with n0 < n but is normalized over the remaining states
with n0 � n that keep being connected until tcnþ2. This
gives Pn ¼ ð1�P

n�1
m¼0 PmÞZ�1

nþ1 or explicitly

Pn ¼ Z�1
nþ1

Yn

m¼1

ð1�Z�1
m Þ; (5)

where Zn�1þP1
m¼n

Q
m
l¼ne

���lðtcnÞ ¼1þe���nðtcnÞ½1þ
e���nþ1ðtcnÞð1þ . . .Þ� includes the electrochemical potentials
�n0 of states n

0 � n taken at the decoupling moment tcn of
the state n. The assumption of well-pronounced Coulomb
blockade implies that the addition energy, ��ðtÞ �
�nðtÞ ��n�1ðtÞ remains large compared to temperature.
Thus there exists sufficiently large �T such that ���ðtÞ �
�T for all relevant n and t. For �T � 1, a further approxi-

mation, Zn � 1þ e���nðtcnÞ, results in at most e��T rela-
tive error for each Pn, leading to a simple expression
for the low-dispersion limit of the sudden decoupling
mechanism,

Pn ¼ �f½�nþ1ðtcnþ1Þ�
Yn

m¼1

f½�mðtcmÞ�: (6)

The distribution (6) is determined by a set of dimensionless
numbers ~�n � ��nðtcnÞ and is narrowly dispersed if
. . . � ~�mþ1 � ~�m � . . . .
Now we consider the athermal limit. At sufficiently low

temperatures the time scale for f½�nðtÞ� switching
between loading (� 1) and unloading (� 0) may become
much shorter than the time scale of reducing �nðtÞ.
Assessing this gradual decoupling limit amounts to
replacing the Fermi functions in Eq. (3) by sharp steps,
fð�nÞ ! �ðt� tbnÞ. Starting with a sharp initial equilib-
rium free of thermal fluctuations, Pnðt0Þ ¼ �n;N with

tNþ1
b < t0 < tNb , the system of equations (3) is reduced to

a set of decay cascade equations:
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_PnðtÞ ¼

8>><
>>:

0; t < tbnþ1;

�nþ1Pnþ1ðtÞ; tbnþ1 < t < tbn;

��nPnðtÞ þ �nþ1Pnþ1ðtÞ; tbn < t:

(7)

These equations generalize the decay cascade model [13]
to distinct tbn’s. One can show that a universal solution to
Eq. (7) independent of the specific shape of �nðtÞ’s time
dependence [13],

Pn ¼ e�Xn

YN

j¼nþ1

ð1� e�XjÞ; (8)

remains valid in the limit of . . . � Xjþ1 � Xj � . . . with

appropriately generalized integrated decay rates, Xn �Rtf
tbn
�nðtÞdt ¼T!0Rtf

t0 W
�
n ðtÞdt.

Distinguishing the two theoretical limits (6) and (8) in a
counting experiment requires information on the depen-
dence of ~�n and Xn on the control parameters such as VGD

and/or fpump. We assume that VGSðtÞ and VGD affect �nðtÞ
linearly and W�ðtÞ exponentially (typical for decay rates
controlled by an energy barrier); see Fig. 2(b). Following
the definitions of Xn and ~�n, this assumption leads to the
following parametrization:

~�n ¼ ���;nVGD þ ��;n; (9a)

lnXn ¼ ��X;nVGD þ �X;n: (9b)

Although the operation frequency was not varied in
our measurements, we note that changing fpump !
xfpump is equivalent to reducing all W�

n ðtÞ by a factor of

x while leaving �nðtÞ intact, as long as the time dependen-
cies remain parametric. Thus we expect �X;nðfpumpÞ ¼
� lnfpump þ const [34]. This is consistent with an experi-

mental study of the capture probability as function of
driving rate [11].
Our measurement results for Pn as a function of VGD

in the region of single electron capture (P1 � 1) are
compared to the thermal [Eqs. (6) and (9a)] and athermal
[Eqs. (8) and (9b)] distributions in Fig. 4. We use
f��;n;��;ng and f�X;n;�X;ng as fit parameters for the

respective models; the maximal likelihood values are given
in Table I. Only 0 $ 1 and 1 $ 2 transitions have been
considered since Pn with n > 2 do not contribute for
VGD <�186 mV (see Fig. 3). The error bars on the data
indicate 95% confidence intervals for estimating probabil-
ity from the binomial statistics of direct counting [27,35].
Measurement data deviate from the thermal limit (red
solid line) beyond confidence interval for voltages
VGD >�190 mV for P1 on linear scale (marked by red
arrow). Note also that the uncertainties for the model
parameters turn out larger for the thermal model (see
Table I). Even stronger deviations can be observed for P2

on the logarithmic scale. Here the thermal model predicts a
linear characteristic, while the apparent nonlinearity is
reproduced well by the athermal limit. Thus, our measured
distribution is consistent with the generalized decay cas-
cade model in the low-noise limit.
The generalized decay cascade limit implies that low-

ering the lead temperature will not increase the initializa-
tion precision, which has indeed been found in surface
acoustic wave driven devices [36]. This feature alone
would, however, not suffice to exclude the thermal distri-
bution as in the past this saturation has been related to rf
heating induced by the modulation [36,37]. Our results
indicate a path for further improvements for dynamic QD
initialization: it may be achieved by increasing the separa-
tion of decay steps (Xn=Xn�1) either by a large decay rate
ratio [�nðtÞ=�n�1ðtÞ] [13] or large energy separation ��,
in which case �nðtbnÞ=�n�1ðtbn�1Þ can be large even if
�nðtÞ � �n�1ðtÞ, due to the difference in tbn�1 and tbn.
Alternatively, devices with reduced coupling between
barrier and plunger may benefit from the thermal limit at
which lowering the temperature will further enhance the
initialization precision. This regime may be reached by
adding compensation pulses to VGD during the transition
(i) ! (ii) in Fig. 2.

FIG. 4 (color online). Measured P1 (points) as function of
VGD, compared to theoretical fits to thermal and athermal limit
(red or gray and black solid lines, respectively). The error bars
indicate 95% confidence intervals. The uncertainty in VGD is
smaller than the linewidth of the error bars. The blue, black and
green data points correspond to P0, P1, and P2, as labeled,
respectively, shown on a logarithmic scale in the inset.

TABLE I. Best fit parameters.

��=X;1=mV�1 ��=X;2=mV�1 ��=X;1 ��=X;2

Thermal �0:293� 0:003 �0:983� 0:023 �60:8� 0:6 �182:1� 4:2
Athermal 0:261� 0:003 0:385� 0:009 �54:5� 0:6 �71:5� 1:6
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Within the decay-cascade limit the effect of frequency
on precision depends on the coupling coefficients �X;n and

is hence device specific. Albeit the precision may improve
by increasing fpump over a limited range, at even higher

frequencies more degrees of freedom than just the total
charge are expected to go out of equilibrium [16,29],
engaging new capture mechanisms beyond the scope of
our quasiclassical Markovian description. However, the
demonstrated experimental counting technique is appli-
cable over a large dynamical range, and thus will be an
important tool for exploration of the high-speed frontier in
nonequilibrium single-electron manipulation.
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