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Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge

current noise. Because of the wave packet nature of the emitted particles, the energy is, however,

fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise

for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature

and potential fluctuations induced in the probe is shown to provide direct information on the single-

particle wave function properties and display strong nonclassical features.
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Recent years have witnessed a surge of interest in
on-demand sources for single particles in mesoscopic and
nanoscale systems. This interest was motivated by the
experimental progress [1–7] on fast, accurate single-
particle emitters, with operation frequencies reaching the
GHz regime. Fast and accurate emitters are key elements in
the efforts to obtain a quantum standard for the Ampère
[8]. In addition to metrological applications, coherent on-
demand sources, emitting regular streams of single-particle
wave packets, are of great, fundamental importance.
As recently demonstrated [5], sources implemented with
edge states in the quantum Hall regime [1,6] open up
possibilities for quantum coherent few-electron experi-
ments [9–14] as well as put in prospect quantum informa-
tion processing [15–17] with clocked single and entangled
two-particle sources. Large efforts have also been put into
characterizing the properties of on-demand sources via the
electrical current and its fluctuations [18–26].

Although the low-frequency charge emission of ideal
on-demand sources is noiseless, the emitted heat fluctuates
[27]. These fluctuations are ubiquitous for quantum coher-
ent sources; particles emitted during a time shorter than the
drive period T have an uncertainty in energy larger than
@=T . Acting as emitters of quantum heat fluctuations,
coherent on-demand sources comprise ideal components
for tests of heat fluctuation relations [28–31] in the quan-
tum regime [32] or for investigating the statistics of
temperature [33,34] or heat transfer [35] fluctuations in
mesoscopic systems. In addition, the large versatility of
system parameters and pulse protocols [5,6] for on-demand
sources allows for a tailoring of the spectral properties of
the emitted wave packets.

In this work we provide a compelling illustration of
the fluctuation properties of system consisting of a generic
coherent on-demand source coupled to a hot-electron
probe; see Fig. 1. It is shown that the temperature and
potential fluctuations induced at the probe, besides funda-
mental constants, depend only on the source frequency and

the spectral properties of the emitted wave packets. For a
wide range of parameters, the quantum fluctuations are
found to dominate over the classical ones. In addition,
the full distribution of the fluctuations reveals a direct
proportionality between the cumulants of the marginal
temperature and potential distributions, allowing for an
experimental investigation of the temperature fluctuations
via correlators of the potential fluctuations.
We first discuss the energy emission properties of an

isolated, optimal on-demand source, emitting a train of
single-particle wave packets j�i, equally spaced T ¼
2�=! in time; see Fig. 1. The wave packets, emitted on

FIG. 1 (color online). (a) Schematic of an on-demand source
injecting single-particle wave packets into an electronic probe,
via the lower edge state of a conductor in the quantum Hall
regime. The probe is in the hot-electron regime, with a floating
electron temperature TpðtÞ and chemical potential �pðtÞ.
Particles emitted from the probe flow along the upper edge
into an electronic reservoir electrically grounded and kept at
zero temperature. (b) Noiseless train of wave packets, emitted
from the single-particle source with a frequency ! ¼ 2�=T .
(c) Probability distribution of energy pð�Þ of the wave packet,
with average h�i and width �� shown.
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top of a filled Fermi sea, are superpositions of states at
different energies,

j�i ¼
Z 1

0
d�cð�Þb̂yð�Þj0i; (1)

where b̂yð�Þ creates a particle at energy � > 0, j0i denotes
the filled Fermi sea, and cð�Þ an amplitude normalized asR
d�pð�Þ ¼ 1, with pð�Þ ¼ jcð�Þj2.
Although energy emission for individual electrons can

be accessed via charge counting in weakly tunnel coupled
systems [29,31,35], for on-demand sources operating in the
GHz regime single-shot energy detection is presently not
possible. Instead one has to consider schemes where the
effect of collecting a large number N � 1 of emitted
electrons, with a fluctuating total energy E, become mea-
surable. For an on-demand source characterized by pð�Þ,
the statistical distribution PðEÞ of the total energy can
conveniently be written

PðEÞ¼
Z
d�ei�EþNFð�Þ; Fð�Þ¼ ln

�Z
d�pð�Þe�i��

�
;

(2)

where NFð�Þ is the cumulant generating function for PðEÞ
and N ¼ t0=T is the number of particles with t0 � T the
measurement time. The different cumulants of PðEÞ are
obtained by successive derivatives of Fð�Þ with respect to
�, giving for the average and the width

hEi ¼ Nh�i; ð�EÞ2 ¼ Nðh�2i � h�i2Þ � Nð��Þ2;
(3)

where h. . .i ¼ R
d� . . .pð�Þ. Importantly, the direct relation

between the statistics of E and pð�Þ of the individual wave
packets depends crucially on the ideal operation of the
source. Irregular wave packet emission or scattering in
space or energy between emission and detection will
make PðEÞ dependent on other factors. We stress that
on-demand sources that emit subsequent, identical electron
and hole wave packets [1], (and hence no net charge) have
the same heat emission properties as pure electron sources
with twice the drive frequency !.

To access the heat fluctuation properties of the source we
consider an on-demand source coupled to a probe in the
hot-electron regime, an electrically and thermally floating
terminal; see Fig. 1. The source-probe setup is imple-
mented in a conductor in the quantum Hall regime, allow-
ing us to minimize scattering, elastically or inelastically,
between particle emission and collection in the probe.
Particles emitted from the source propagate to the probe
along the lower edge state. From the probe, emitted parti-
cles follow the upper edge and are collected in a grounded
electronic reservoir kept at low (here zero) temperature.

In the hot-electron probe, injected particles thermalize
rapidly, via electron-electron interactions, on the time scale
�e-e. This time is much shorter than the typical time �d a
particle spends inside the probe before being reemitted.

However, it is assumed that the energy exchange with the
lattice phonons takes place on the time scale �e-ph, much

longer than �d, reasonable for low temperatures and
small dimensions of the probe. The electron distribution
in the probe is then in a quasiequilibrium state, character-
ized by a chemical potential and temperature. In order to
prevent charge and energy pileup in the floating probe,
both the chemical potential �pðtÞ and temperature TpðtÞ
develop fluctuations in time. The potential fluctuations
can be detected by present day electrical measurements.
Importantly, as we now show, the potential fluctuations
also provide direct information on the quantum heat fluc-
tuation of the source, via pð�Þ of the individual particles.
To present a clear and compelling picture we analyze the

temperature and potential fluctuations within a Boltzmann-
Langevin approach. We write TpðtÞ ¼ �Tp þ �TpðtÞ and

�pðtÞ ¼ ��p þ ��pðtÞ with �Tp, ��p average quantities

and �TpðtÞ, ��pðtÞ fluctuating Langevin terms. The statis-

tics of �TpðtÞ and ��pðtÞ is determined from underlying

quantum properties, as discussed below. First we consider
the average quantities �Tp and ��p. The starting point

is the operator for charge current at the probe [36], ÎcpðtÞ ¼R
d�d�0eið���0Þt=@îpð�; �0Þ where îpð�; �0Þ ¼ ðe=hÞ �

½b̂yð�Þb̂ð�0Þ � âyð�Þâð�0Þ� with b̂yð�Þ½âyð�Þ� creating
particles incident on [emitted from] the probe. By analogy

we write the operator for the energy current ÎepðtÞ ¼R
d�d�0eið���0Þt=@½ð�þ �0Þ=2�îpð�; �0Þ. Taking the quantum

average with respect to the emitted source state,
Eq. (1), and the state of the probe, and averaging over a
time much longer than the period T , we arrive at the dc
component of charge and energy currents

hIcpi ¼ �
e

T
� g0

��p

e
; hIepi ¼ h�i

T
� g0

2

�
��2
p

e2
þ l0 �T

2
p

�
;

(4)

where g0 ¼ e2=h is the (single spin) conductance quantum
and l0 ¼ ð�kB=eÞ2=3 the Lorentz number. To account for
both types of sources discussed, we introduced � ¼ 0 for
sources emitting no net charge and � ¼ 1 for sources
emitting one electron per cycle. We note that the first and
the second terms of hIcpi and hIepi in Eq. (4) are the currents
emitted by the source and the probe, respectively. The
conditions for zero average charge and energy currents at
the probe, hIcpi ¼ 0 and hIepi ¼ 0, give from Eq. (4)

��p¼�@!; �Tp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

g0l0T
½2h�i��@!�

s
: (5)

Importantly, ��p and �Tp depend only on the source prop-

erties ! and h�i and fundamental constants [5]. We note
that h�i> @!=2 follows along the lines of Ref. [37].
Turning to the temperature and chemical potential

fluctuations [38], the quantities of primary experimental
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interest are the low-frequency correlators hð��pÞ2i �
ð1=t0Þ

R
dtdt0h��pðtÞ��pðt0Þi and equivalently for

hð�TpÞ2i, with the measurement time t0 � T . We first

point out that the total fluctuations of charge and energy
currents �Icp and �I

e
p are made up by bare fluctuations �Icp

and �Iep and fluctuations due to the varying temperature

and voltage of the probe, @Tp
hIxpi�Tp and @�p

hIxpi��p,

with x ¼ c; e, as

�Icp

�Iep

 !
¼ �Icp

�Iep

 !
þ

@�p
hIcpi @Tp

hIcpi
@�p

hIepi @Tp
hIepi

 !
��p

�Tp

 !
; (6)

suppressing for shortness the time dependence of the
fluctuations. In the long time, low-frequency limit, fluctu-
ations of the total charge and energy currents at the floating
probe are suppressed; i.e., we have �Icp ¼ 0 and �Iep ¼ 0.

Together with Eqs. (4) and (6) we can then express
��p and �Tp in terms of the bare charge and energy

fluctuations as

��p ¼ h

e
�Icp; �Tp ¼ 1

g0l0 �Tp

�
�Iep �

��p

e
�Icp

�
: (7)

The correlators hð��pÞ2i and hð�TpÞ2i can thus be

expressed in terms of low-frequency correlators of
bare charge and energy fluctuations h�Ixp�Iypi � ð1=t0Þ�R
dtdt0h�IxpðtÞ�Iypðt0Þi. The correlator of the Langevin

terms h�IxpðtÞ�Iypðt0Þi is evaluated by taking the quantum

average of the corresponding correlator of current opera-

tors Îcp, Î
e
p following Ref. [36]. We arrive at

hð��pÞ2i ¼ hkb �Tp;

hð�TpÞ2i ¼ 1

g0l0

�
kb �Tp þ 1

2

ð��Þ2
h�i � �@!=2

�
:

(8)

The potential fluctuations hð��pÞ2i are proportional to the

average temperature, typical for equilibrium systems [38].
In contrast, the temperature fluctuations hð�TpÞ2i are a sum
of two physically distinct terms. The first term, the classi-
cal fluctuations, is proportional to �Tp and results from the

finite temperature of the probe and would be present even
if the injected particles had a well-defined energy, i.e.,
�� ¼ 0. The second term, quantum fluctuations, is pro-
portional to ð��Þ2 and is a direct result of the uncertainty of
the energy of the injected particle. Importantly, for a broad
range of drive frequencies ! and wave packet mean ener-
gies h�i and widths ��, the quantum term dominates over
the classical one. We also point out that there are no
correlation between the voltage and the temperature fluc-
tuations, i.e., h��p�Tpi ¼ 0.

In order to investigate the presence of quantum heat
fluctuations in higher order potential correlations, and
also to provide a complete picture of the temperature and

potential fluctuations, we turn to the full probability
distribution. To relate to the average and fluctuation
correlators above, we introduce a dimensionless potential

� ¼ ð1=hÞRt0
0 dt�pðtÞ, and temperature T ¼ ð1=hÞ�Rt0

0 dtkbTpðtÞ, fluctuating quantities integrated over the

measurement time t0. The joint probability distribution
P t0ð�; TÞ can be conveniently written in terms of a cumu-

lant generating function Gð�; 	Þ as

P t0ð�;TÞ¼ 1

ð2�Þ2
Z
d�

Z
d	e�i	T�i��þGð�;	Þ; (9)

with � and 	 counting fields for � and T respectively.
From Gð�; 	Þ the low-frequency cumulants are then, by
construction, obtained from successive derivatives with
respect to the counting fields, giving t0h�Tn

p��
m
p i ¼

ð�ihÞnþmk�n
b @n	@

m
�Gð�; 	Þj�;	¼0.

To determine Gð�; 	Þ we first spell out the relations
between the time scales in the problem. The potential
�pðtÞ fluctuates on the time scale given by the RC time,

�RC, while the temperature TpðtÞ typically fluctuates on the
time scale of the dwell time in the probe, �d. We assume
that the system is in the limit �e-e � �RC, �d � �e-ph.

Moreover, we consider periods of the source, T , and
measurements time such that t0 � �d, �RC � T . On
time scales � such that T � � � �d, �RC the statistics
of net transferred energy Ep and charge Qp in the probe

can be described by the source generating function
�hsð
; �Þ with

hs ¼ !

2�

�
�ie�
þ Fð�Þ

�
(10)

with Fð�Þ given in Eq. (2) and the probe generating
function �hpð
; �; Ep;QpÞ with [39–41]

hp ¼ 1

h

Z
d�fln½1þ fpð�Þðeie
þi�� � 1Þ�

þ ln½1þ fð�Þðe�ie
�i�� � 1Þ�g; (11)

where fpð�Þ ¼ fpð�;�p; TpÞ and fð�Þ are the probe and

the reservoir distribution functions (see Fig. 1) and � and 

are the counting fields for Ep and Qp, respectively. The

energy Ep and chargeQp are related to Tp and�p as Ep ¼
�½�2

p=2þ ð�kbTpÞ2=6� and Qp ¼ �e�p, where � is the

density of states in the probe. Working within the frame-
work of the stochastic path integral formalism [41,42], we
can then express Gð�; 	Þ as a path integral over all con-
figurations of Ep and charge Qp during the measurement.

In the long time limit we have

eGð�;	Þ ¼
Z

dQpdEpd
d�e
SðQp;Ep;
;�Þ; (12)

where SðQp; Ep; 
; �Þ ¼ t0½i	kbTp=h þ i��p=h þ
hpðQp; Ep; 
; �Þ þ hsð
; �Þ�. Similar to Refs. [33,40,41],
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the integral in Eq. (12) is solved in the saddle point
approximation. Inserting the solutions for Qp, Ep, 
, �

into SðQp; Ep; 
; �Þ we arrive at

Gð�; 	Þ ¼ N

�
d½zFðzÞ�

dz
þ �ðzþ i�Þ

�
; (13)

recalling thatN ¼ t0=T , where FðzÞ � Fð�Þji�¼z=@! and z
is found from the relation z2½dF=dzþ �=2� ¼ �ð�2=6Þ�
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2g
p Þ2 with gð�; 	Þ ¼ ð3=�2Þ½ði�Þ2=2þ i	�. We

note that the leading corrections to the saddle point solu-
tion in Eq. (13) are an order T =�d, T =�RC � 1 smaller
than Gð�; 	Þ and hence negligible [42]. From Eq. (13) we
note several important things. First, by expanding Gð�; 	Þ
in terms of � and 	 we see that the first two cumulants
reproduce the results in Eqs. (5) and (8). Second, all the
even chemical potential cumulants, from the first two terms
in Eq. (13), can be expressed in terms of the temperature
cumulants as

hð��pÞ2ni ¼ ð2n� 1Þ!!ðkbhÞnhð�TpÞni; (14)

a consequence [43] of the counting fields entering
via gð�; 	Þ.

The full distribution P t0ð�; TÞ can be found (to expo-

nential accuracy) by solving the integral in Eq. (9) in the
saddle point approximation. We obtain the compact
expression

lnP t0ð�;TÞ¼�iT	�þGð0;	�Þ�ð�� ��Þ2=ð2TÞ; (15)

where �� ¼ t0 ��p=h ¼ �N and the saddle point solution 	�

is found from the relation dF=dzjz¼z� þ �=2 ¼
�ð�2=6ÞðTq�=NÞ2, with z� ¼ Nðq� � 1Þ=ðq�TÞ and

q� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i6	�=�2

p
. Importantly, Eq. (15) shows that the

potential � displays Gaussian fluctuations, of width
ffiffiffiffi
T

p
,

around the average �� for any given temperature T.
Hence, the marginal potential distribution P t0ð�Þ ¼R
dTP t0ð�;TÞ is symmetric around ��; i.e., odd cumulants

are zero, albeit P t0ð�Þ is not Gaussian. Moreover, the

marginal distribution for the temperature P t0ðTÞ ¼R
d�P t0ð�; TÞ is given by lnP t0ðTÞ¼�iT	�þGð0;	�Þ.

Since P t0ðTÞ, via Gð0; 	�Þ, describes the key features of

P t0ð�; TÞ, we focus for shortness on the marginal tempera-

ture distribution.
To illustrate our results we evaluate lnP t0ðTÞ for

two distinct cases. First, as a reference, we consider

the generic Gaussian spectral distribution pð�Þ ¼
1=ð ffiffiffiffiffiffiffi

2�
p

��Þe�ð��h�iÞ2=ð2ð��Þ2Þ. Taking the classical limit,
with �� � h�i, we get the simple result

lnP t0ðTÞ ¼ �ð�2=6ÞTð1� �T=TÞ2 (16)

with �T ¼ t0kb �Tp=h the average value of T. The log proba-

bility is plotted in Fig. 2. For small fluctuations T � �T � �T

the distribution is Gaussian while for T � �T the probabil-

ity is suppressed P t0ðTÞ / e��2 �T2=ð6TÞ, guaranteeing

P t0ðTÞ ! 0 for T ! 0. The probability for large

fluctuations T � �T is suppressed as P t0ðTÞ / e�T�2=6.

For finite but small width �� � h�i, the log probability
in Eq. (16) is multiplied by the term 1þ
ð��=h�iÞ2 �T2�2=ð12TNÞ for T � �T, a small quantum cor-

rection. In contrast, for an exponential distribution pð�Þ ¼
ð1=h�iÞe��=h�i derived in Ref. [19] for adiabatic particle
emission and investigated in Ref. [18], we find the
probability

lnP t0ðTÞ ¼ ��2 �T

6

�
T
�T
ð1� q�Þ � 2

�
ln

�
Tq�
�T

��
; (17)

where q� ¼ ð�=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �T=T þ 1þ �2=4

p Þ=ðT= �T þ �Þ and
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�i=ð6@!Þp
. The probability distribution is plotted

in Fig. 2 for different values of �. We see that for increas-
ing �, corresponding to slower drive ! and/or larger
average wave packet energies h�i, the distribution gets
increasingly broad and deviates strongly from the classical
one in Eq. (16).
In conclusion we have investigated the quantum fluctu-

ations of the heat current emitted from a single-particle
source. We show that these quantum heat fluctuations
can be detected via electrical potential fluctuations of a
probe coupled to the source. For typical parameters [1]
2�!� 1 GHz and h�i � 0:1 meV we get ��p � 5 �eV

and �Tp ¼ 0:2 K, demonstrating the experimental feasibil-

ity of our proposal.
We acknowledge valuable discussions with C. Flindt,

M. Büttiker, A. Jordan, S. Gasparinetti, G. Haack, and R.
Whitney. We acknowledge support from the Swedish VR.

FIG. 2 (color online). Normalized logarithm of the probability
distribution P t0 ðTÞ as a function of T= �T, with �T the average

value of T. The curves correspond to the narrow Gaussian wave
packet energy distribution (blue solid curve) in Eq. (16) and to an
exponential energy distribution with � ¼ 1 (black dotted curve),
3 (red dash-dotted curve), 5 (green dashed curve). See text for
details.
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[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais,
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086805 (2011).

[24] F. Battista and P. Samuelsson, Phys. Rev. B 83, 125324
(2011); 85, 075428 (2012).

[25] F. D. Parmentier, E. Bocquillon, J.-M. Berroir, D. C.
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[35] R. Sánchez and M. Büttiker, Europhys. Lett. 100, 47008
(2012).
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