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We investigate the competing Fermi surface instabilities in the kagome tight-binding model.

Specifically, we consider on-site and short-range Hubbard interactions in the vicinity of van Hove filling

of the dispersive kagome bands where the fermiology promotes the joint effect of enlarged density of

states and nesting. The sublattice interference mechanism devised by Kiesel and Thomale [Phys. Rev. B

86, 121105 (2012)] allows us to explain the intricate interplay between ferromagnetic fluctuations and

other ordering tendencies. On the basis of the functional renormalization group used to obtain an adequate

low-energy theory description, we discover finite angular momentum spin and charge density wave order,

a twofold degenerate d-wave Pomeranchuk instability, and f-wave superconductivity away from van

Hove filling. Together, this makes the kagome Hubbard model the prototypical scenario for several

unconventional Fermi surface instabilities.
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Introduction.—The interplay of fermiology and interac-
tions gives rise to a plethora of ordering phenomena in two-
dimensional electron systems. Starting from an itinerant
electron picture, the density of states (DOS) at low energies
around the Fermi level as well as nesting features of the
Fermi surface are the relevant parameters of the kinetic
theory. In the limit of weak interactions imposed on the
noninteracting electrons where a perturbative treatment is
asymptotically exact, superconducting order as a phase-
coherent superposition of Cooper pairs is the generically
encountered Fermi surface instability [1]. This situation can
be changed in various different ways: By enhancing the
interaction scale or via nesting and enlarged DOS at the
Fermi level, order due to condensation of particle-hole pairs
can become competitive and even favorable to supercon-
ductivity. Prominent examples include magnetic (charge)
order via a spin (charge) density wave which can induce
superconductivity as a function of doping or pressure.

Since the discovery of the cuprates, it has widely been
appreciated that electronically mediated interactions, in
particular, can give preference to electron condensates
with the finite angular momentum of the condensing pairs.
It implies that the pairs which condense form at a finite
distance, so as to minimize Coulomb repulsion in the case
of a Cooper pair. This yields a momentum dependence of
the associated mean field order parameter, which can
impose nodes on the Fermi surface in the ordered phase.
In the case of a particle-hole condensate with opposite
charge of the pair constituents, it is less generic that a
pair of finite angular momentum should be energetically
preferable. As another difference to particle-particle pairs,
the orbital angular momentum of a particle-hole pair does
not unambiguously determine the spin of the pair to be
singlet or triplet, which implies an even richer variety of

possible orderings [2–4]. While this is short of a complete
characterization, one important factor in favoring such
orders is given by a tuned arrangement of longer-range
interactions [2], a direction which has recently become
experimentally accessible with sufficient tunability in
dipolar fermion models [5]. Still, until today, the main
challenge in theory has been to find bare models of inter-
acting electrons where these phases can be found as the
natural ordered state at low energies.
In this Letter, we propose and analyze the kagome

Hubbard model (KHM) as a prototypical microscopic
model to realize certain kinds of such unconventional
Fermi surface instabilities. The kagome lattice [6] pos-
sesses a minimal three-band model due to three sites per
unit cell [Fig. 1(a)]. For the KHM, the three sublattices

FIG. 1 (color online). Fermiology of the kagome tight-binding
model. (a) Band structure where the shaded region is the vicinity
around the VHF n ¼ 5=12 with an enlarged density of states
(inset). (b) Fermi surface at the VHF. An N ¼ 96 patch discre-
tization of the Brillouin zone is given along with the change of
dominant sublattice occupation (different tones of dots) on the
Fermi surface. The nesting vectors Q1;2;3 connect different

sublattice states at the Fermi level. The gray dashed line hints
the Fermi surface at n ¼ 5=12þ 0:02.
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have a fundamental impact on the preferred electronic
many-body state at all regimes of coupling strength. In
the strong coupling limit at half-filling, the kagome spin
model exhibits strong quantum spin fluctuations and has
become a primary candidate for quantum spin disordered
phases [7–9], and doping the spin model leads to valence
bond order at fractional fillings [10]. At intermediate cou-
pling, comparatively little is known about the electronic
quantum phases. At fillings up to the flat band [Fig. 1(a)],
ferromagnetism has been proposed on the basis of Stoner’s
criterion [11].

For the dispersive band fillings which we address in this
work, the scenario is more complicated and involves the
interplay of nesting, Fermi level DOS, and interactions.
This is likewise indicated from recent studies at infinitesi-
mal coupling where the sublattice interference mechanism
has been developed as a key property to understand the
KHM [12]. Out of the search for microscopic material
scenarios of a kagome lattice model at intermediate cou-
pling, the Herbertsmithites such as ZnCu3ðOHÞ6Cl2 appear
as an important class of candidates, while it is still hard to
judge from neutron experiments how relevant charge fluc-
tuations are and how the system behaves upon doping [13].
Promising alternative routes start to emerge in optical
kagome lattices of ultracold fermionic atomic gases such
as for the isotopes 6Li and 40K [14].

Main results.—As a function of local and nearest neigh-
bor Hubbard couplings U0 and U1, we find a rich phase
diagram of the kagome Hubbard model at and around the
van Hove filling (VHF), which is summarized in Fig. 2.
Right at the VHF, where the Fermi level DOS is maximally
enhanced and nesting features of the Fermi surface are
strongest [Fig. 1(b)], the system promotes ferromagnetism
(FM) for dominant U0. This is a consequence of the
suppression of local Hubbard matrix elements due to sub-
lattice interference [12] which otherwise would give rise to

spin density wave or superconducting order. As U1 is
enhanced, we discover p-wave (L ¼ 1) charge bond order
(cBO) and spin bond order (sBO) phases (Fig. 3). This is
again motivated by the sublattice interference which sup-
presses the energy gain of a zero angular momentum
particle-hole condensate. For dominant U1, we find a
d-wave (L ¼ 2) Pomeranchuk instability (PI) which is
twofold degenerate due to the associated two-dimensional
irreducible point group representation of the kagome lat-
tice, i.e., the E2 element of the C6v symmetry group. This
explains why the nematic phase resulting from there can
break the rotation symmetry of the kagome lattice in differ-
ent ways, which leads to different distortions of the Fermi
surface (Fig. 4). As we deviate from the VHF, nesting
effects get reduced. While the PI (FM) phase still persists
for dominant U1 (U0), f-wave superconductivity (f-SC)
emerges in the intermediate regime as a consequence of
longer-range interactions and ferromagnetic fluctuations
which promote spin alignment of the Cooper pairs (Fig. 5).
Kagome Hubbard model.—We consider the Hamiltonian

H ¼ X
hi;ji

X
�

ðcyi�cj� þ H:c:Þ þ�
X
i;�

ni;�

þU0

X
i

ni;"ni;# þU1

2

X
hi;ji;�;�0

ni;�nj;�0 ; (1)

where U0 denotes the local and U1 the nearest neighbor
Hubbard term, � is the chemical potential, and the tight-
binding hopping term has been set to unity. In what fol-
lows, we adjust the chemical potential such that we are
around VHF n ¼ 5=12 and set the Fermi level at VHF
to zero energy [Fig. 1(a)]. There, the Fermi surface pos-
sesses a hexagonal form where the van Hove points are
located at the M point in the Brillouin zone [Fig. 1(b)].
It follows that there are three important nesting vectors

Q1 ¼ �ð� 1
2 ;�

ffiffi
3

p
2 Þ, Q2 ¼ �ð1; 0Þ, and Q3 ¼ �ð� 1

2 ;
ffiffi
3

p
2 Þ,

with the lattice constant between two adjacent sites set to
unity. Away from the VHF, the Fermi surface is rounded

FIG. 2 (color online). Phase diagram of the U0-U1 kagome
Hubbard model at (a) VHF n ¼ 5=12 and (b) away from VHF at
n ¼ 5=12þ 0:02. The shaded areas for smallU0 andU1 indicate
regimes where critical ordering scales were too small to be
determined. In (a), FM is found for large U0, along with a
d-wave PI for large U1 as well as intermediate sBO and cBO
phases. In (b), the PI and FMphases persist away fromVHF,while
the density wave orders disappear in favor of an f-SC phase.

FIG. 3 (color online). Real space patterns of L ¼ 1 density
wave orders with (a) cBO (S ¼ 0) and (b) sBO (S ¼ 1). Both
orders are superpositions of the one-dimensional alternating
bond orders induced along the momentum transfer Q1;2;3, yield-

ing a 12-site unit cell. Enhanced charge density bonds in (a) are
indicated by thick black lines, " ( # ) bonds in (b) by thick blue
(red) lines.
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[gray dashed line in Fig. 1(b)] and nesting is reduced.
The nesting vectors Q1;2;3 connect parts of the Fermi

surface whose states are dominated by different sublattices
[Fig. 1(b)]. As a consequence, by transforming the local
Hubbard term U0 into band space, the matrix elements
along the nesting vectors are suppressed, which we call
sublattice interference [12]. If this interference mechanism
were absent or neglected, the short-range KHMwould take
on phases dictated only by the nesting vectors Q1;2;3, such

as a spin density wave state and d-wave superconductivity
below some finite coupling strength [15]. Instead, the
sublattice interference enhances the relevance of ferromag-
netic fluctuations stemming from the local Hubbard term
and also promotes the relevance of the nearest neighbor
Hubbard coupling.

N-patch functional renormalization group.—We employ
the functional renormalization group (FRG) to obtain an
effective low-energy description of the bare model in (1),
which has proved suitable in a variety of interacting

two-dimensional electron systems [16]. We study how the
two-particle vertex evolves under integrating out high-
energy fermionic modes along a temperature-flow cutoff

scheme: V�ðk1; k2;k3; k4Þcyk4;scyk3;�sck2;�sck1;s, where� is the

temperature cutoff approaching zero within the flow, k1, k2
(k3, k4) denote the ingoing (outgoing) fermionic momenta,
and s, �s take on opposite spin orientations. This is sufficient
because, for a spin-rotation-invariant model, the Sz ¼ 0
sector of the scattering vertex allows us to extract the (triplet)
singlet channel by (anti)symmetrization of the vertex. We
neglect the self-energy corrections along the flow and dis-
cretize the k’s to represent specific patches in the Brillouin
zone. In Fig. 1(b), we have depicted such a patching scheme
forN ¼ 96 patches. The phase diagrams in Fig. 2 have been
obtained with this level of discretization. In order to assure
that the discretization yields converged results, we have
employed supercomputer facilities to compute selected
points of the phase diagram for up to N ¼ 384 patches,
which corresponds to solving a 5:7� 107-dimensional sys-
tem of integrodifferential equations. The leading diverging
channel of the two-particle vertex signals the occurrence of
a Fermi surface instability. It is then decomposed into
eigenmodes to obtain the associated form factor [17].
Ferromagnetism.—As alluded to above, the sublattice

mechanism suppresses strong finite momentum scattering
channels originating from U0. When the local Hubbard
interaction is dominant, the large Fermi level DOS drives
ferromagnetic fluctuations without any other competing
channel, which thus explains the formation of FM order.
This holds at and around the VHF (Fig. 2). The order

parameter reads OFM ¼ P
k;l;s;s0 hcykls�ss0ckls0 i, where �

denotes the vector of Pauli matrices. In addition, the pro-
pensity toward spin alignment from the ferromagnetic
fluctuation background at high energies provides further
bias for the sBO phase at the VHF and the f-SC phase
away from the VHF.
Spin and charge bond order.—As U1 is enhanced at the

VHF, the nesting vectors Q1;2;3 become important again.

FIG. 4 (color online). PI in the regime U1 >U0. The Q ¼ 0 particle-hole pairing does not break translational symmetries and is
dominated by third nearest neighbor pairing of the same kagome sublattice which follows from the form factors of Eq. (3) shown in (a).
The PI lies in the L ¼ 2 sector (d-wave type) and is twofold degenerate. It yields a distortion of the Fermi surface which can break the
rotational symmetry in different ways such as to C2v in (b) or C2 in (c).

FIG. 5 (color online). f-SC away from the VHF for U0 �U1.
(a) f-wave pairing form factor (black solid line) between the �
and � sublattices. The signal should be small for the
�-dominated domains on the Fermi surface (red patches 1–16
and 48–64). The � and � regimes of the form factor are best fit
via second nearest neighbor pairing harmonics (dotted lines).
The real space amplitudes of the �-� pairing are shown in (b).
The total f-wave signal is built by adding the analogous �-� and
�-� components.
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This is because the sublattice interference does not apply to
nearest neighbor Hubbard interactions which connect dif-
ferent kagome sublattices. As a consequence, the KHM
exhibits cBO, also known as the Peierls phase, which is
characterized as a L ¼ 1, S ¼ 0 particle-hole condensate
as well as its spinful condensate counterpart L ¼ 1, S ¼ 1,
i.e., the sBO phase (Fig. 3). The cBO shows an alternating
sequence of bonds with enhanced and reduced charge.
Accordingly, the sBO exhibits alternating bonds of
enhanced " spin occupancy and enhanced # spin occupancy.
Both cBO and sBO can be deconstructed into separate
bond orders along the three individual directions in the
kagome lattice, which, recast in momentum space, are
exactly Q1;2;3. For sBO, the order parameter is given by

OsBO ¼ X
k;s;s0
l;m;n

D
cykls�ss0ckþQmns

0
E
sin

�
Qmk

�

�
j"lmnj; (2)

where "lmn is the Levi-Civita tensor. Equation (2) takes a
similar form for cBO, where�ss0 is replaced by the identity
matrix 1ss0 . There are in principle three independent bond
order mean fields associated with these directions. As they
are independent and degenerate, however, the system gains
energy by forming all of them at the same time, which
results in a 12-site unit depicted in Fig. 3(a) for cBO and in
Fig. 3(b) for sBO. We checked in a 12-band mean field free
energy analysis that the system linearly gains energy from
forming the individual mean fields; i.e., the ordering along
the individual bond directions is independent.

Pomeranchuk instability.—The PI forms for dominantU1

at and around the VHF. The singularity in the particle-hole
channel is located at momentum transfer Q ¼ 0, implying
that it does not break translational symmetries but instead
drives the system into a nematic phase as it breaks the lattice
rotational symmetries of the KHM. The particle-hole con-
densate is characterized by L ¼ 2, S ¼ 0. According to the
irreducible lattice representations of the kagome lattice, a
d-wave instability necessitates a twofold degenerate dx2�y2 ,

dxy subspace of solutions [18]. These form factors are

depicted in Fig. 4(a). It turns out that the most dominant
harmonics in this symmetry sector relate to the third nearest
neighbor, i.e., equal sublattice particle-hole pairing. It is
revealing to investigate what kind of Fermi surface distor-
tion can result from such an instability. As stated before, the
PI effectively generates a third nearest neighbor hybridiza-
tion. Its lattice rotational character, however, is not uniquely
specified because we could in principle form any real
superposition of the dx2�y2 , dxy solutions [19], i.e.,

fd
x2�y2

ðkÞ ¼ cosð2kxÞ � cosðkxÞ cosð
ffiffiffi
3

p
kyÞ;

fdxyðkÞ ¼
ffiffiffi
3

p
sinðkxÞ sinð

ffiffiffi
3

p
kyÞ:

(3)

Within our approach, we are short of an answer as to which
linear combination is energetically preferable since the
lack of self-energy damping results in an unbound energy

gain from Fermi surface distortion. This ambiguity is also
visible in the order parameter

OPI ¼
X
k;l;s

hcyklscklsi½Afdx2�y2
ðkÞ þ BfdxyðkÞ�; (4)

where A and B specify the superposition. We note, how-
ever, that the remainder rotational group down to which the
PI can establish a nematic phase depends on the chosen
linear combination. In Fig. 4(b), the remainder group isC2v

and the Fermi surface is shifted away from all van Hove
points, while, for example, in Fig. 4(c), one van Hove point
remains unaffected and the remainder group is C2.
f-wave superconductivity.—Away from the VHF for

intermediate U0 and U1, we find an f-wave, i.e., L ¼ 3,
S ¼ 1, Cooper pair condensate in the KHM. Figure 5(a)
shows the form factor associated with the order, and
Fig. 5(b) depicts the real space amplitude pattern which
is essential to identify the dominant harmonics in the
f-wave symmetry sector, i.e., the typical pairing distance
[18]. We find that superconductivity pairing forms between
second nearest neighbors to avoid the short-range Hubbard
interaction. Denoting the three sublattices by �, �, and �,
we can decompose the pairing into three different form

factor contributions given by f�;�ðkÞ ¼ sinð32 kx þ
ffiffi
3

p
2 kyÞ,

f�;�ðkÞ¼sinð32kx�
ffiffi
3

p
2 kyÞ, and f�;�ðkÞ ¼ sinð ffiffiffi

3
p

kyÞ, where
fm;n ¼ fn;m and fm;m ¼ 0. Together, they form the order

parameter

Of-SC ¼ X
k;m;n

hcykm"c
y
kn# þ cykm#c

y
kn"ifm;nðkÞ; (5)

which can be rotated within the triplet state to the Sz ¼ �1
sectors. Such a multisublattice scenario is similar to a
multiorbital superconductor where the form factor can be
similarly decomposed into different orbital pairs [20].
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Note added.—Upon completing the manuscript, we

became aware of an independent work that investigates
the kagome Hubbard model strictly at van Hove filling
through a singular mode FRG, which is a complementary
approach to the N-patch FRG with enhanced radial reso-
lution of the renormalization group flow [21,22]. The dis-
crepancies in terms of qualitative results with respect to
Ref. [22] could trace back to details of how the flow to
strong coupling at the end of the renormalization group
flow is treated, in addition to how adequately the Fermi
surface curvature is kept in both methods. These subtle
differences are important when rather exotic ordering of
finite distance pairs emerges, yielding crucial dependen-
cies of all vertex momenta. This is the generic case for
most kagome lattice orders we find, such as PI (third
nearest neighbor) or f-SC (second nearest neighbor).
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