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In the exact Kohn-Sham density-functional theory, the total energy versus the number of electrons is a
series of linear segments between integer points. However, commonly used approximate density func-
tionals produce total energies that do not exhibit this piecewise-linear behavior. As a result, the ionization
potential theorem, equating the highest occupied eigenvalue with the ionization potential, is grossly
disobeyed. Here, we show that, contrary to conventional wisdom, most of the required piecewise linearity
of an arbitrary approximate density functional can be restored by careful consideration of the ensemble
generalization of density-functional theory. Furthermore, the resulting formulation introduces the desired
derivative discontinuity to any approximate exchange-correlation functional, even one that is explicitly
density dependent. This opens the door to calculations of the ionization potential and electron affinity,
even without explicit electron removal or addition. All these advances are achieved while neither
introducing empiricism nor changing the underlying functional form. The power of the approach is
demonstrated on benchmark systems using the local density approximation as an illustrative example.
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Density-functional theory (DFT) is a widely popular
approach to the many-electron problem [1-6]. It is
based on mapping the interacting-electron system into a
noninteracting one. DFT is exact in principle, but the
exchange-correlation (xc) density functional E, [n(7)]
remains unknown and is always approximated in practice.

Many constraints that the exact E,[n(7)] has to satisfy
have been formulated. Of particular interest here is the
piecewise-linearity property: Using a zero-temperature
ensemble of integer-electron states [7,8], the realm of
DFT has been extended to fractional-electron numbers
(N =Ny + a, where Ny EN and « €[0,1]). It has
been shown [9] that the total ground-state energy E is
given by

E(N) = (1 — @)E(Ny) + aE(N,y + 1). (1)

An important manifestation of piecewise linearity [9—13] is
the relation between the highest occupied orbital energy &y,
and the ionization potential (IP) I = E(N,) — E(Ny + 1).
If piecewise linearity is maintained, &,, = —I, a result
known as the IP theorem [9,14].

Despite the importance of piecewise linearity, it has long
been known that commonly used functional classes, such
as the local density approximation, the generalized gra-
dient approximation, or the conventional hybrid functional
approximation, grossly disobey this condition. Instead, a
typically convex E(N) curve is obtained (see, e.g.,
Refs. [10,13,15-19]), and, correspondingly, the discrep-
ancy between g, and —1 can easily be as large as a factor
of 2 [20-23].

Two main approaches have emerged in response to this
problem. In one approach, various correction terms are
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imposed on existing underlying xc functionals [24-31].
In another approach, piecewise linearity is explicitly
enforced in the construction of novel range-separated
hybrid functionals [32-37].

The above considerations on piecewise linearity, or lack
thereof, are all based on a description of fractional-electron
systems by insertion of a density n(7), which integrates to a
fractional N, into a density functional developed originally
for pure states. One may question whether this straightfor-
ward application is at all optimal. Indeed, Gidopoulos et al.
[38] have observed, in the context of an excited-state
ensemble, that straightforward application of the Hartree
term leads to an unphysical ‘“ghost contribution.”
More recently, Gould and Dobson [39] have made similar
observations of ‘““ghost interactions” in the context of
the exact-exchange (EXX) functional with fractional spin
densities and used ensemble definitions to propose an
improved, linearized EXX functional.

Here, we offer an ensemble generalization of all energy
terms of an arbitrary density functional to systems
with fractional N. Using the simplest functional of all,
the local density approximation, on example systems, we
find that this generalization greatly reduces the problem
of the energy curve convexity, significantly restores the IP
theorem, and concomitantly introduces an appropriate
derivative discontinuity into the xc potential in a natural
manner. All this is achieved while neither introducing
empiricism nor changing the underlying functional form.

Our considerations start with the ground state of
a zero-temperature interacting-electron system with

fractional N, described by an ensemble state A=
(1 = )|y Xy, | + alWy 1 XWy, 4], where [Py 1))
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is a (pure) many-electron ground state with Ny + p elec-
trons and p is O or 1 [40]. The electron density is then
obtained using the density operator /(7)) = ¥ ;8(F — F;) as

n(7) = Tr{A A} = (1 — a)ny(7) + an, (7). )

ny(7) and n,(¥) are the densities of the interacting systems
with Ny and N, + 1 electrons, respectively. As a result, the
total energy E is obtained as in Eq. (1).

In the Kohn-Sham (KS) formulation of DFT, the
interacting-electron system is mapped into one KS system
of noninteracting electrons with a fractional number of
particles N. Therefore, its ground state must also be
an ensemble state, given by Agg = (1 — a)lfl)g%))(q)g\‘;;)|+
a|<1>§5‘>+1><c1>§§“+1| where |<D§§:))+p) are pure KS ground
states, with Ny + p electrons, respectively, [2,40,41].
Each pure ground state is described as a Slater determinant
of single-electron orbitals {goga)}, corresponding to the
same, a-dependent KS potential. In contrast to the quan-
tities | Wy, ;. ,) and n,,, all quantities of the KS ensemble are
a dependent, a fact we emphasize via the superscript ().
Hence, in addition to the explicit dependence of AKS on a,
there also exists an implicit dependence through {go(“)}

Similarly to Eq. (2), the KS density is obtained
as  n\&(F) = Tr{Agsi} = (1 — @)p{(F) + ap\(?) =

© gl (PP, where p,(7) = <cl>§5g>+,,| |, ) =
077 1o\ (7)1 and

1 i=N,
gi=1a i=Ny+1 3)
0 i>Ny+1

are the occupation numbers of the KS levels. While n{%)(7)
is required to equal n(7) by construction, we stress that
pﬁf’)(?) need not equal n,(7). Moreover, because ny(7),
n;(7) and n(F) can all be obtained independently from
each other by considering systems with different N,
Eq. (2) can be viewed as a linearity criterion for the density,
complementing Eq. (1).

We now examine the ensemble properties of the
Coulomb energy of the KS system, associated with the
operator W =133 .| — By definition [3],
the Coulomb functional W = Tr{AxsW} = Wy + W, is
comprised of a Hartree (H) and an exchange (x) term.
Performing the Tr operation, we can express the ensemble
terms Wy and W, by means of the standard, pure-state
definitions of the Hartree and EXX functionals (see the
Supplemental Material [42]). We obtain

2|1
rjl .

Wy = (1 — @)Eg[pi] + aEylp'®] (4)

= (1 — a)E[p{"] + aE[p\] (5)

where as usual

1 >\ ()
EH[”]=—f d%’d%”% (6)
2 |7 — #|
and
(7)o" (AP (7
Ex[l’l] — Z gg][ d3rd3r’ gol( )goljf )QD-)/(l )QD]( )
F—r

lj 1
(7

Because Ep[n] is not linear in n, it immediately follows
that the required Wy of Eq. (4) is not obtained by inserting

the fractional-electron density n(a) into Eq. (6). A similar
statement is true for E [n] and W, [39]. Therefore,
the Hartree and EXX functionals do not retain their

usual forms for ensemble states. Instead, Wy = Ey[n]+
AE.uley), el and W,

@ (212, (]2
1 le e )
AE.; = Ea(l - a)[fd3rd3r’ Ny 1(7) jv0+1( )

|7 — 7'l

=E [n]— AEeH[go%z)H ;a], where

®)

is the ensemble (e) correction.

Note that, for « = 0 or 1, Wy and W, reduce to their
usual forms (6) and (7). Thus, introduction of the term
AE,; does not affect the total energies of systems with an
integer N. In addition, even at fractional NV, the total energy
obtained for EXX calculations with no correlation should
not be affected either, as AE,y appears with opposite signs
in Wy and W, [43]. However, the Hartree expression is
usually complemented by an approximate xc functional
E,.[n] that is not the EXX. Error cancelation is then not
expected and, as shown below, not obtained. Trivially,
an arbitrary E,.[n] is not linear in n, but it can still be
made explicitly linear in «, in the same spirit as in Egs. (4)
and (5) above, yielding

(1 — QE[p{1+ aE[p™] (9

(see the Supplemental Material [42]). Note that, while the
dependence of E.,. on « is now explicitly linear, there
remains an implicit nonlinear dependence via the functions

pﬁ,“>(?). For the special case of the local spin density
approximation (LSDA), we refer to its ensemble-
generalized form, using Eq. (9), as eLSDA.

Importantly, the ensemble expressions Wy [Eq. (4)] and
E.. [Eq. (9)] no longer depend explicitly on the density n,
even for underlying functionals that are explicitly density
dependent for pure states, such as the LSDA. Ultimately,
they depend on the KS orbitals (themselves a functional

Eex[n] =

of n) via p @)(7), as well as on « itself. This affects the KS
potential vkg. To remain within the KS framework, it must
now be evaluated using the optimized effective potential
(OEP) procedure, appropriate for implicitly density-
dependent functionals [22,44-47]. A complete derivation
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of vgg is provided in the Supplemental Material [42].
One unusual aspect of it, which we stress here, is that the
explicit dependence of Wy and E.. on « contributes a
spatially uniform but a-dependent term to vgg, given by

>

|7 = 7]

(@ (=121 ,@ (2
U(O):_%[[Iqo%ﬂ(r)l loNy e PO 5

+ E[p\ @] - E[p®]- [ 10, (A Pv[p\ 1,

(10)

where v,. = 8E,./Sn is the usual xc potential. This term
involves the highest (possibly partially) occupied orbital

ga;\‘;:))ﬂ and does not vanish even when N is an integer,

despite the fact that for integer values the conventional
and ensemble-generalized energy expressions are identical.
Such a constant term, although allowed by the Hohenberg-
Kohn theorem [48], is usually deemed unimportant because
it does not affect the density or the total energy. However,
it does shift the KS eigenvalues, a fact we show below to
be crucial. Thus, all calculations now conceptually involve
orbital-dependent functionals, although for integer N the
term v© can be easily evaluated without performing the
computationally demanding OEP calculation.

To illustrate the proposed generalization and its impli-
cations, we apply the eLSDA functional to the H, molecule
and the C atom using DARSEC—an all-electron, real-space
code [49] (numerical details are given in the Supplemental
Material [42]). The total energies for the above two sys-
tems, as a function of the net charge ¢, are given in Fig. 1,
with ¢ ranging from —2 (doubly ionized system) to O
(neutral system). The LSDA energy curves are, as
expected, convex [10,15,17,19]. The curve for the
eLSDA is, however, almost piecewise linear, being slightly
concave. The strong reduction in the deviation from piece-
wise linearity is a significant advantage of the ensemble
approach. This deviation is not fully eliminated because,
while the eL.SDA functional is explicitly linear in « by
construction, it may still be implicitly nonlinear through

{¢§“)}. A comparison of the eLSDA results to the EXX
ones shows that the piecewise linearity of eLSDA is com-
parable to that of EXX. An obvious advantage of eLSDA,
however, is the treatment of correlation.

eLSDA also affords a significant improvement in satis-
fying the density linearity criterion, Eq. (2). We consider
D(7) := n(7) — (1 — a)ng(F) — an,(¥), which should
equal 0 at all 7 for the exact functional. A plot of D(F)
at g = —0.5 for H,, as obtained with LSDA and eLSDA,
is presented in Fig. 2. Clearly, the spatial profile of D(F)
is smoother with eLSDA, and its average numerical
value is much smaller. Specifically, Q(q) := [ D*(F)d°r,
which is the variance of D(F) per a given g, is
~107* Bohr™3 with LSDA. With eLSDA, however, it is
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—— LSDA-straight line
<+ EXX

—— EXX-straight line

E Ry)
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%o 715 “10 P30 205 00
q q

FIG. 1 (color online). Energy of the H, molecule (top) and of
the C atom (bottom) as a function of fractional charge g for
various functionals. The EXX results for H, have been shifted
upward by 0.4 Ry for clarity. The straight solid lines connect the
energies obtained at the integer value as a reference for complete
piecewise linearity.

lower by 2 orders of magnitude for ¢ = —1,...,0 and
essentially zero for g = —2,..., —1.

The great improvement in the piecewise linearity of the
energy curve (Fig. 1) is directly manifested in the degree to
which the IP theorem is satisfied. This is illustrated in
Fig. 3. The figure shows the highest (possibly partially)
occupied orbital g;,, the energy derivative dE/dg, and
the negative of the IP —/ (computed from total energy

FIG. 2 (color online).

Deviation from piecewise linearity in the
density, D(F), obtained for the H, molecule for ¢ = —0.5 using
(a) LSDA and (b) eLSDA.
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FIG. 3 (color online). Frontier orbital energy ¢;,, the energy
derivative dE/dq as a function of ¢, and the negative of the IP
—1, calculated for H, with the LSDA and eLSDA functionals.

differences obtained at integer ¢ values), as calculated for
H, as a function of g with both LSDA and eLSDA. Janak’s
theorem [50], which equates &, and dE/dq for any ap-
proximate functional, is indeed closely obeyed by both
approximations. But, because eLSDA is much more piece-
wise linear, the gp,(g) calculated with it is much more
piecewise constant as a function of g (as it should be for
the exact functional). Furthermore, &, coincides much
more closely with —/ when approaching an integer ¢
from below, in agreement with the IP theorem [9,14]—a
direct consequence of the constant potential v(©.

The satisfaction of the IP theorem is closely related to
another fundamental property of the exact xc functional:
As the number of electrons crosses an integer, the xc
potential may ‘“‘jump” by a constant, usually known as
the derivative discontinuity [9]. The conventional wisdom
on explicit density functionals (including LSDA) is that
they do not possess this discontinuity. Recently, Stein et al.
[13] have shown that a significant increase in the degree of
piecewise linearity must be accompanied by the appear-
ance of a discontinuity in the xc potential. Here, it emerges
from v© of Eq. (10), which depends on the highest occu-
pied orbital and is therefore different if one approaches an
integer N from the left or from the right. Therefore, the
derivative discontinuity of explicit density functionals
arises naturally, without invoking any empiricism. This is
readily observed in Fig. 3 and Table I: the fundamental
gap of the ion Hj, deduced from the discontinuity in &y,
around g = —1, is much larger with eLSDA than with
LSDA and corresponds much more closely to the result
obtained from total energy differences (solid black line
in the figure). Similar observations apply to the C atom
(see Table I). Thus, our ensemble-based approach auto-
matically identifies and restores the missing derivative
discontinuity, appropriate for any underlying functional.
Importantly, as the potential “jumps’ by a constant at the
integer-electron point, owing to the derivative discontinu-
ity, the KS orbitals do not change at all. Therefore, the
missing derivative discontinuity can be evaluated using
only the Kohn-Sham eigenvalues and orbitals of the integer

TABLE I. Highest occupied orbital energy —ey,,, compared to
the IP 7, and the cation fundamental gap, deduced from the
discontinuity of &, at ¢ = —1, compared to the difference
between the second and first IPs of the neutral system. All
quantities are computed for both H, and C, and all energies
are given in Ry. The A’s correspond to the relative error between
the two values positioned immediately above them.

LSDA  eLSDA  EXX  Experiment®
H,  —e, 0745 1223 1193
1 1.178 1.178 1.130 1.134
A 37% 4% 6%
Hy Gap 0.426 1.320 1.489
L—1, 1298 1298  1.446 1.443°
Ay  T1% 2% 3%
C —e,, 0450 0942 0876
I 0.859 0.859 0.793 0.828
Ao 48% 10% 10%
ct Gap 0.019 1.125 1.140
L, -1 0.962 0.962 0.982 0.965
A 98% 17% 16%

gap

#Reference [51].

"For H; , no experimental value for I, exists. Instead, it was
obtained from EXX calculations, which yield an exact result for
this system.

point itself. This opens the door to calculations of the
ionization potential and electron affinity even without
explicit electron removal or addition.

In conclusion, we presented a generalization of the
Hartree, exchange, and correlation terms of an arbitrary
density functional to systems with a fractional-electron
number, based on the ensemble form of DFT. Using the
local density approximation on H, and C as illustrative
examples, we showed that this generalization significantly
reduces the deviation from piecewise linearity and gener-
ates the appropriate derivative discontinuity, without intro-
ducing empiricism and with no changes to the underlying
functional form. With this generalization, the total energy
at integer-electron numbers remains intact but the eigene-
nergies change and the IP theorem is much more closely
obeyed. This shows that problems that have plagued simple
approximate density functionals for many years can be
very strongly mitigated by rigorous employment of en-
semble DFT within the OEP approach, without any further
functional development. We expect this proposed general-
ization to be equally useful for more advanced approxi-
mate functionals, as well as for more complex systems,
allowing for improvement in spectroscopic properties
without any compromise on energetics.
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