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The equilibrium properties of a minimal tiling model are investigated. The model has extensive ground

state entropy, with each ground state having a quasiperiodic sequence of rows. It is found that the

transition from the ground state to the high temperature disordered phase proceeds through a sequence of

periodic arrangements of rows, in analogy with the commensurate-incommensurate transition. We show

that the effective free energy of the model resembles the Frenkel-Kontorova Hamiltonian, but with

temperature playing the role of the strength of the substrate potential, and with the competing lengths not

explicitly present in the basic interactions.
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Tilings provide a simple means to model systems with
both simple and complex ground states. As statistical
mechanical models, they include such systems as the
Ising and Potts models, as well as other models with
discrete spin variables [1]. The class of tilings, however,
is much larger [2], and includes the various nonperiodic
Wang tilings [3], the quasiperiodic Penrose tilings, the
asymptotically isotropic Pinwheel tiling [4], and the
recently discovered generalizations of the Rudin-Shapiro
sequence, which are neither periodic nor quasiperiodic [5].

The statistical mechanical behavior of tiling models is
rich, and, as yet, largely uncharted. Apart from results
which may be transcribed from discrete spin models,
only a very small number of systems have been studied.
First, a model based on the Amman set of 16 Wang tiles
with quasiperiodic ground states was studied by several
authors [6–8]. It appears that this model undergoes a
continuous phase transition from a disordered state to a
quasiperiodic phase, and its nonequilibrium behavior was
studied in the context of spin glasses. A variation of the
model allowing more complicated interactions and vacan-
cies shows a first order transition [9]. Hierarchical tilings
[10] have also been studied, and a very recent model [11]
possesses limit-periodic ground states which undergo a
series of phase transitions where motifs of ever larger
scales order as the temperature is lowered. Finally, we
note some recent studies [12,13] on models with a large
number of degenerate disordered ground states aimed at
studying glasses.

In this Letter, we study the equilibrium behavior of a
model based on the 13-tile Kari-Culik (KC) set [14,15] of
Wang tiles, both numerically and analytically. The KC set
is the smallest known aperiodic set—it is the smallest set
of tiles which can tile the plane, but not periodically.
Allowed juxtapositions of tiles are enforced by matching
rules, and these in turn induce a Hamiltonian: every match-
ing rule violation is penalized by a positive energy, while
allowed matchings have zero energy. In what follows, we

shall denote the energy cost of mismatching adjacent ver-
tical or horizontal edges by Jx or Jy, respectively.

We shall argue that the equilibrium behavior of this
system is analogous to the Frenkel-Kontorova (FK) model
[16] of the commensurate-incommensurate (CI) transition.
The FK model describes a chain of masses which are
connected by springs and subjected to a periodic substrate
potential. It exhibits rich behavior due to competition
between these two interactions, each of which favors order-
ing with a different wavelength. However, in marked con-
trast with the FK model, where the favored length scales
are present in the Hamiltonian, in the KC model they
emerge spontaneously, from only nearest-neighbor inter-
actions. Moreover, the role of substrate potential strength
in the FK model is played by the temperature in the KC
model. In this sense, the KC system exhibits an entropic CI
transition.
As indicated in Fig. 1, the 13 KC tiles may be divided

into two groups, which we will call types A and B. The
markings on the edges of the tiles indicate the matching
rules—abutting edges of adjacent tiles have the same
markings in a perfect tiling. It is readily seen that in an
undefected tiling, a given row can consist of A or B type
tiles only, with no mixing, and thus, we may characterize a
row as being A type or B type.
The KC tiling differs from other tilings studied in that it

is not generated by recursive substitution (inflation) [2,17],
and by the fact that it has a ground state degeneracy with

FIG. 1 (color online). The 13 KC tiles. The seven upper tiles
are type A, and the six lower tiles are type B. Note that 03 , 0, and

00 are considered different markings.
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extensive entropy. This should be contrasted with tilings
created from a simple inflation rule where the degeneracy
scales as a power of the system size [6]. All the ground
states, however, are characterized by a quasiperiodic
arrangement of A-type and B-type rows. The finite tem-
perature behavior of this model is striking—as the tem-
perature is increased from zero, the rows, still identifiable
as A or B type, order periodically with a decreasing period.
At high enough temperatures, the rows lose their A or B
identity, and the system becomes disordered.

The proof that there exists a zero-energy ground state is
equivalent to showing that a perfect tiling exists. To do this
[18], we note that there are two numbers which character-
ize the nth row in a perfect tiling—the ‘‘frequency’’�n and
the number qn which are related through the mapping

�nþ1 ¼ qn�n; (1)

where

qn ¼
(
2 1

3 � �n < 1

1
3 1 � �n < 2 :

(2)

Note that we shall take n to increase in the negative y
direction.

The reason for dividing the tile set into the A and B
groups becomes apparent if we denote the markings of the
top, bottom, right, and left edges of a tile by ft; b; r; lg, as
shown in Fig. 2. When needed, we shall indicate the
position of the tile as a subscript; thus tm;n refers to the

marking of the top edge of the tile centered at (m, n), etc. It
is easily verified by inspecting Fig. 1 that the markings on
each tile satisfy the relation

qntm;n þ lm;n ¼ rm;n þ bm;n; (3)

with a tile of type A or B having qn ¼ 2 or 1
3 , respectively.

The mapping �nþ1 ¼ qn�n has no periodic points, since
�nþq=�n ¼ 2p=3q�p � 1 for any positive integers p and

q; this implies that the resultant tilings are not periodic.

The �n are distributed densely, but not uniformly, in the
range ( 13 , 2).

To show that a perfect tiling exists, we must solve Eq. (3)
for all m, n with qn derived from Eqs. (1) and (2) while
demanding that bm;n ¼ tm;nþ1 and lm;n ¼ rm�1;n. It is

easily verified that the markings

tm;n ¼ bm�nc � bðm� 1Þ�nc;
rm;n ¼ qnbm�nc � bmqn�nc;

(4)

constitutes a solution, where bxc is the greatest integer less
than or equal to x (see Fig. 2); this is one example of a
perfect tiling.
To facilitate later discussion, we shall employ a useful

mapping. Let us define the variable �n ¼ n!0, where
!0 ¼ log2= logð6Þ � 0:3868. Decomposing �n into its
integer and fractional parts gives

�n ¼ bn!0c þ f�ng; (5)

where f�ng, the fractional part of�n, is defined through its
relation to �n by

f�ng ¼ logð�nÞ þ logð3Þ
logð2Þ þ logð3Þ : (6)

This maps �n 2 ½13 ; 2Þ onto f�ng 2 ½0; 1Þ, and allows us to
obtain [19] an explicit formula for qn :

qn ¼
�
1

3
� 2

�
½bðnþ 1Þ!0c � bn!0c� þ 2:

Sequences of this type are called Sturmian sequences, and
are well known in the context of automatic sequences [20].
Here !0 is irrational, and this gives a quasiperiodic
sequence of the two ‘‘letters’’ 2 and 1

3 , with the conse-

quence that, in the ground state, the rows appear in a
quasiperiodic sequence.
As noted above, this ground state is only one of many,

and in fact, there is an extensive ground state entropy [19].
This may be inferred from Fig. 3, where two patches with
the same markings on their exterior are presented (there
exist larger patches with the same property as well). This
means that starting from some given ground state, we may
obtain another by randomly exchanging the patches shown
in Fig. 3 (and any other pair of patches with the same
exterior markings), provided, as we have verified [19], that

FIG. 2. The marking scheme for the tile at (m, n). Note that n
increases in the negative y direction.

FIG. 3 (color online). An example of two different 2� 2
patches with the same outer markings; these may be exchanged
with no matching rule violations.
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they appear with a finite density in the ground state. This
implies that almost all of the ground states are disordered
in the sense that their patch entropy [21] scales as the patch
size for large enough patches. This notwithstanding, in all
the ground states, the rows are arranged in a quasiperiodic
sequence of A type and B type, and it is also true that �n is
unchanged for each row [19], which is relevant to what
follows.

Numerical studies of this model show that as the tem-
perature is raised from 0, it goes through a series of phase
transitions, where the A-B sequence of rows is periodic,
and where the period decreases with increasing tempera-
ture. In analogy to the CI transition, we shall refer to these
periodic phases as commensurate phases. In Fig. 4, we
show a portion of a time averaged configuration from a
150� 150 system (with Jx ¼ Jy) at T ¼ 0:304 (in units of

Jx), which was obtained by parallel tempering, where the
color coding is as in Fig. 1. The A-B sequence is periodic
with period 8, with 3 B rows per period. Characteristic
defects are also present. At high enough temperature, of
course, the rows lose their A or B character, and the system
goes to a disordered phase.

The different phase transitions are best traced by the

winding number � ¼ NB

NAþNB
. Since at low T the rows are

essentially pure type A or B, � essentially counts the
fraction of type B rows in the system. For an ensemble of
systems at any given temperature, � may take a variety of
values, where the distribution has a well-defined maximum
value,�max, which is typically close but not identical to the
average h�i [22]. For large systems, both�max and h�iwill
equal !0 � 0:3868 at T ¼ 0 and approach 6

13 � 0:46 as

T ! 1. The first order nature of the transitions between
the different commensurate phases can be verified by

looking at the distribution of � near the transitions, which
exhibits two well separated peaks, with one overtaking the
other as the transition temperature is crossed [19]. This
suggests that �maxðTÞ is a reliable indicator of these
transitions.
In Fig. 5, we show curves of �max and the specific heat

CV vs T, for a 150� 150 system. At low temperature, the
system is in its ground state, and�max ¼ !0 (to within

1
L ).

As temperature is increased, �max undergoes three jump
discontinuities before becoming fully continuous as the
rows are no longer homogeneous. While the stepwise
behavior of �max is a clear indication of the existence of
the commensurate phases and the first order nature of the
transitions between them, its value at the plateaus does not
give the exact periodicities due to limited resolution and
the existence of defects, and these then must be inferred by
looking at the configurations themselves, as in Fig. 4. The
first order transitions are accompanied by small bumps in
the specific heat at the same temperatures. In Fig. 5, we
identify phases with periods of 8 and 13 rows with the
lower and middle plateaus, respectively. In our examina-
tions of systems of sizes up to L ¼ 300, we have identified
phases with� ¼ 1

3 ,
3
8 ,

5
13 ,

7
18 , and

8
21 , depending on system

size and values of the coupling constants [23]. At these
temperatures, we have verified numerically that the rows
substantially maintain their pure A or B character. The
broad peak in the specific heat at T � 0:37 attends the
loss of purity in the rows.
These results may be understood by an effective coarse-

grained description of this system, appropriate for low
temperatures, when the system may be considered as com-
posed of A and B type rows [24]. This description resem-
bles the Frenkel-Kontorova model [16], and exhibits a
competition between length scales. To see this, note that
for the perfect tiling, the value of the frequency �n for the
nth row may be calculated from the tile markings: �n ¼
limL!1 1

L

P
L
m¼1 tmn. From this, using Eqs. (5) and (6), we

can compute �n. Now, although defects enter the rows at
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FIG. 5 (color online). �max and CV as a function of tempera-
ture, for a 150� 150 system with Jx ¼ Jy.

FIG. 4 (color online). Finite temperature configuration aver-
aged over time exhibiting 3

8 periodicity. The row structure is

evident, with colors as in Figure 1. Here L ¼ 150, Jx ¼ Jy, and

T ¼ 0:304. Note that type B rows appear only in singles, while
there can be two successive type A rows.
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finite T, we may still define two frequencies, using the
markings of the top and bottom of a row. The ‘‘top fre-
quency’’ is defined as �T

n ¼ 1
L

P
L
m¼1 tmn while the ‘‘bottom

frequency’’ is given by �B
n ¼ 1

L

P
L
m¼1 bmn. For a perfect

tiling, �B
n ¼ �T

nþ1, and therefore, from Eq. (1), �B
n=�

T
n ¼

qn, but this will typically not be the case for defected
tilings. This notwithstanding, the �n at finite T may be
inferred from �T

n using Eq. (6) in the same manner as for
the perfect tiling. These will be the variables used in our
effective description.

To construct an effective free energy for this model we
assume that the dominant contributions come from the
entropy of the rows, and the energy due to mismatches
between the rows, each of which is characterized by its
frequencies �T and �B . We argue that the energy cost
associated with an imperfect interface between rows n and
nþ 1 goes as LJyj�B

n � �T
nþ1j, where L is the length of the

row. Clearly, this term is zero in the ground state, and
numerical simulations bear out this functional form for
low temperatures [19]. At this level of coarse graining, a
row is characterized by its frequency �T (or equivalently
�B), and its entropy should be a function of this frequency
which is extensive in L, so that we shall write the entropy
of the nth row as L~sð�T

n Þ.
Taken together, we get that the free energy is given by

F=L ¼ P
L
n¼1 Jyjqn�T

n � �T
nþ1j � T~sð�T

n Þ. It is convenient
to express this in terms of the variables �n discussed
above. The free energy is then of the form

F

L
¼ X

m

Jygð�m;�mþ1Þ � Tsð�mÞ; (7)

where gð�m;�mþ1Þ is a function that favors �mþ1 ¼
�m þ!0, which holds identically in the ground state.
The entropy sð�nÞ depends only on the fractional part
f�ng, and thus it is a periodic function with period one. It
is the competition between these two length scales which
gives the novel behavior observed. Although it is tempting
to expand gð�n;�nþ1Þ to first order as gð�n;�nþ1Þ /
j�nþ1 ��n �!0j, we note that such an expression fails
when both f�ng and f�nþ1g are larger than 1�!0 , since
this would imply two adjacent B rows, which carries a
disproportionately large energy cost.

The equilibrium configuration of the�n can be obtained
by minimizing F. As in the FK model, the first term favors
an incommensurate phase with a winding number!0 while
the entropy favors a commensurate configuration. The
temperature T plays the role of the strength of the periodic
potential, so that commensurate phases are expected at
high temperature, while incommensurate phases are
expected at low temperatures. The commensurate phases
that are expected are those with a winding number close to
!0 such as 1=3, 3=8, 5=13, etc. We have observed some of
these phases in our numerical study, as seen in Fig. 5,
where their presence is indicated by the plateau values of
�max. At still higher temperatures the segregation into type

A and B rows breaks down, resulting in a disordered phase.
It is interesting to speculate about the low T behavior of
this system. It might be that only at T ¼ 0 an incommen-
surate phase appears, but it could be that such a phase,
possibly with power-law correlations, is stable at finite T.
These issues will be addressed in future research.
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