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Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for UðNÞ and
SUðNÞ lattice gauge theories with fermionic matter based on quantum link models. These systems share

qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature

or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems

and can address the corresponding chiral dynamics in real time.
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Introduction.—Non-Abelian gauge fields play a central
role in the dynamics of the standard model of particle
physics. In particular, the strong SU(3) gauge interactions
between quarks and gluons in quantum chromodynamics
(QCD) give rise to the spontaneous breakdown of the chiral
symmetry of the light quarks. Heavy-ion collisions pro-
duce a high-temperature quark-gluon plasma in which
chiral symmetry is restored. The deep interior of neutron
stars contains high-density nuclear matter or even quark
matter, which may be a baryonic superfluid or a color
superconductor [1]. Unfortunately, due to severe sign prob-
lems, the real-time evolution of heavy-ion collisions or the
phase structure of dense QCD matter is inaccessible to first
principles classical simulation methods. In condensed
matter physics strongly coupled gauge theories play a
prominent role in strongly correlated systems. In particu-
lar, the non-Abelian SU(2) variant of quantum spin liquids
has long been debated as a possible connection between the
doped Mott insulator and the high-Tc superconducting
phase in cuprates [2]. The challenge of solving such prob-
lems motivates the development of quantum simulators for
non-Abelian lattice gauge theories. Recently, quantum
simulators have been constructed for Abelian U(1) gauge
theories with [3–5] and without coupling to matter fields
[6,7]. Here, we construct a quantum simulator of UðNÞ
and SUðNÞ strongly coupled lattice gauge theories in
(1þ 1), (2þ 1), and ð3þ 1ÞD using ultracold alkaline-
earth (AE) atoms in an optical lattice. On the one hand,
our approach is based on quantum link models (QLMs)
[8–10], which allow the exact embodiment of non-Abelian
gauge interactions in ultracold matter. On the other hand,
we utilize fundamental symmetries of matter, such as the
SUð2I þ 1Þ invariance of interactions between fermionic
AE isotopes such as 87Sr or 173Yb [11–20]. While still
being far from a quantum simulator for full QCD, simpler
model systems share several qualitative features, including
confinement, chiral symmetry breaking, and its restoration
[1]. They provide a unique environment to investigate
important dynamical questions which are out of reach for
classical simulation.

The nonperturbative physics of non-Abelian gauge theo-
ries is traditionally addressed in the context of Wilson’s
lattice gauge theory [21], in which the gluon field is
represented by parallel transporter matrices residing on
the links connecting neighboring lattice points of a 4D
space-time lattice. Since Wilson’s classical link variables
take values in the continuous gauge group SUðNÞ, the
corresponding Hilbert space is infinite dimensional even
for a single link. The elements of a quantum link matrix are
noncommuting operators, similar to the components of a
quantum spin. As a result, QLMs have a finite-dimensional
Hilbert space, and therefore provide an attractive frame-
work for the construction of quantum simulators for dy-
namical Abelian and non-Abelian gauge theories. In the
continuum limit of QLMs, which is naturally realized via
dimensional reduction, one recovers QCD with chiral
quarks as domain wall fermions [22,23]. A pedagogical
introduction to QLMs, together with an extensive expla-
nation of the corresponding terminology, is contained in
the Supplemental Material (SM) [24].
Quantum link models.—The hopping of electrons

between lattice sites x and y in an external magnetic

background field ~B ¼ ~r� ~A is described by c y
x uxyc y,

where uxy ¼ expðiRy
x d

~l � ~AÞ 2 Uð1Þ is the phase picked

up in this process [25]. In particle physics, gauge fields
appear as dynamical quantum degrees of freedom, not just
as classical background fields. Here we consider UðNÞ and
SUðNÞ lattice gauge theories without approaching the con-
tinuum limit, using so-called staggered fermions, which

are represented by creation and annihilation operators c iy
x

and c i
x, that obey standard anticommutation relations.

Here i 2 f1; 2; . . . ; Ng represents the non-Abelian color
index of a quark. The fundamental gauge degrees of free-
dom representing the gluon field are N � N matrices Uxy

(with elements Uij
xy) associated with the link between

nearest-neighbor points x and y [cf. Fig. 1(a)]. The hopping
of a quark, which exchanges color with the gluon field, is

then described by c y
xUxyc y ¼ c iy

x Uij
xyc

j
y. This term is

invariant against gauge transformations, �c x ¼ �xc x,
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�c y
x ¼ c y

x�
y
x ,

�Uxy ¼ �xUxy�
y
y , with �x2UðNÞ. The

SUðNÞ gauge transformations and the additional U(1)
gauge transformation contained in UðNÞ are generated by

Ga
x ¼ c iy

x �a
ijc

j
x þ

X

k

ðLa
x;xþk̂

þ Ra
x�k̂;x

Þ;

Gx ¼ c iy
x c j

x �
X

k

ðEx;xþk̂ � Ex�k̂;xÞ;
(1)

where k̂ is a unit vector in the k direction, �a (a 2
f1; 2; . . . ; N2 � 1g) are the SUðNÞ Gell-Mann matrices,
and fabc are the SUðNÞ structure constants, such that
½Ga

x; G
b
y� ¼ 2i�xyfabcG

c
x. The operators L

a
xy and R

a
xy repre-

sent SUðNÞ electric field operators associated with the left
and right end of a link hxyi, while Exy represents the

Abelian U(1) electric field operator. Physical states j�i
obey the SUðNÞ Gauss law Ga

x j�i ¼ 0, while in a UðNÞ
gauge theory also Gxj�i ¼ 0. The operators U, La, Ra,
and E associated with the same link obey

½La;Lb�¼2ifabcL
c; ½Ra;Rb�¼2ifabcR

c;

½La;Rb�¼½E;La�¼½E;Ra�¼0;

½La;U�¼��aU; ½Ra;U�¼U�a; ½E;U�¼U;

(2)

while operators associated with different links commute.
In Wilson’s lattice gauge theory, U is an element of the

gauge group. In a UðNÞ gauge theory, detU ¼ expði’Þ 2
Uð1Þ represents a Uð1Þ link variable, canonically conjugate

to the electric flux operator E ¼ �i@’. In an SUðNÞ gauge
theoryU 2 SUðNÞ and La, Ra take appropriate derivatives
with respect to the matrix elements Uij. The resulting
Hilbert space per link is then unavoidably infinite dimen-
sional. In order to represent the commutation relations of
the gauge algebra of Eq. (2) in a finite-dimensional Hilbert
space, QLMs give up the commutativity of the matrix
elements Uij without compromising gauge invariance.
The real and imaginary parts of the matrix elements Uij

of the N � N quantum link matrix are represented by 2N2

Hermitean operators. Together with the electric field op-
erators La, Ra, and E these are 2N2 þ 2ðN2 � 1Þ þ 1 ¼
ð2NÞ2 � 1 generators which form the embedding algebra
SUð2NÞ. While U(1) quantum links can be represented by
quantum spins embedded in an SU(2) algebra, UðNÞ or
SUðNÞ QLMs can be realized with different representa-
tions of SUð2NÞ. A useful representation is based on
fermionic rishon constituents of the quantum links [23]

La¼ ciyþ�a
ijc

j
þ; Ra¼ ciy��a

ijc
j�; E¼1

2
ðciy�ci��ciyþciþÞ;

Uij¼ ciþcjy� ; N ¼ ciy�ci�þciyþciþ: (3)

The rishon creation and annihilation operators, ciy� and ci�,
are associated with the left and right ends of a link
[cf. Fig. 1(a)] and obey standard anticommutation rela-
tions. Our construction of a quantum simulator for U(1)
gauge theories used Schwinger bosons to represent quan-
tum links [3]. Here it is natural to replace Schwinger
bosons by rishon fermions. N counts the number of
rishons on a link.
The Hamiltonian of a ðdþ 1ÞD UðNÞ QLM with stag-

gered fermions takes the form

H ¼ �t
X

hxyi
ðsxyc iy

x Uij
xyc

j
y þ H:c:Þ þm

X

x

sxc
iy
x c i

x

¼ �t
X

hxyi
ðsxyQy

x;þkQy;�k þ H:c:Þ þm
X

x

sxMx; (4)

where sx ¼ ð�1Þx1þ���þxd and sxy ¼ ð�1Þx1þ���þxk�1 , with

y ¼ xþ k̂. t is the strength of the hopping term, and m is
the mass. The summation convention is implicit in the
color indices. We have also introduced the UðNÞ gauge
invariant ‘‘meson’’ and ‘‘constituent quark’’ operators

Mx ¼ c iy
x c i

x and Qx;�k ¼ ciyx;�kc
i
x. Together with the

‘‘glueball’’ operators �x;�k;�l ¼ ciyx;�kc
i
x;�l, they form a

site-based Uð2dþ 1Þ algebra. The rishon number is con-
served locally on each link. The UðNÞ model has no
baryons, since the Uð1Þ baryon number symmetry is
gauged. In order to obtain charge conjugation invariance
C and to reduce the gauge symmetry to SUðNÞ, one must
work with N xy ¼ N rishons per link. Adding the term

�
P

hxyiðdetUxy þ H:c:Þ to the Hamiltonian explicitly breaks

the UðNÞ gauge symmetry down to a local SUðNÞ and a

(a)

(c)

(e)

(d)

(b)

FIG. 1 (color online). (a) (upper panel) UðNÞ QLM in ð1þ1ÞD
with quark fields c i

x on lattice sites and gauge fields Uij
x;xþ1 on

links; (lower panel) hopping of AE atoms between quark and
rishon sites of the same shading. (b) Implementation of the QLM
in rishon representation with fermionic atoms in ð2þ 1ÞD.
(c) Encoding of the color degrees of freedom for N ¼ 2 ( " , # )
in Zeeman states of a fermionic AE atom with I ¼ 3=2.
(d) Lattice structure to avoid the interaction in fermionic matter
sites using a species-dependent optical lattice (for an alternative
method using site-dependent optical Feshbach resonances, see
the main text). (e) Initial state loaded in the optical lattice with a
staggered distribution of doubly occupied sites for a U(2) QLM
with N ¼ 2.
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global U(1) baryon number symmetry generated by B ¼P
xðc iy

x c i
x � N

2Þ. The symmetries of various model sys-

tems are summarized in Table 1 of the SM [24]. All models
have a Zð2Þ chiral symmetry, which is spontaneously
broken at a critical temperature Tc, and may get restored
at nonzero baryon density nB. It would be natural to add

electric and magnetic field energy terms g2

2

P
hxyiðLa

xyL
a
xy þ

Ra
xyR

a
xyÞ, g02

2

P
hxyiE2

xy, and 1
4g2

P
hwxyziðUwxUxyUyzUzw þ

H:c:Þ, where hwxyzi denotes an elementary plaquette
with g2 and g02 as the coupling constants. At strong cou-
pling these terms are inessential for qualitative features of
the dynamics at finite temperature or baryon density, and
are thus not yet included in our implementation.

Atomic quantum simulation of UðNÞ QLMs.—An illus-
tration of the QLM and its rishon representation for
ð1þ 1ÞD and ð2þ 1ÞD is provided in Fig. 1. Quark fields
c i

x reside on the lattice sites x, while the rishons cix;�k are

on ‘‘link sites’’ (x, �k) at the left (right) end of the links
exiting (entering) the point x [cf. Fig. 1(a), lower panel].
The key step in our physical implementation is to interpret
the lattice with quark and rishon sites in Figs. 1(a) and 1(b)
as a physical optical lattice for fermionic atoms. Hence, an
atom on site x of the optical lattice represents a quark c i

x,
while hopping of this atom to a link site (x,�k) converts it
to a rishon cix;�k. The color index i is encoded in internal

atomic states.
The basic building blocks in our atomic setup are the

tunnel-coupled triple wells in ð1þ 1ÞD [Fig. 1(a)] or the
cross-shaped vertices in ð2þ 1ÞD [Fig. 1(b)]. The corre-
sponding hopping dynamics of the atoms is described
by the Hamiltonian hx;k ¼ ~tðsxyQx;þk þQx;�k þ H:c:Þ.
Physically, the overlap of the Wannier wave functions
can be used to implement the usual tunneling [26]. In
case different phases are needed to simulate staggered
fermions in the lattice, Raman assisted tunneling [25] or
shaken optical lattices [27,28] can be applied. In order to
obtain the desired quark-rishon dynamics, we introduce the
microscopic atomic Hamiltonian

~H ¼ U
X

hxyi
ðN xy � nÞ2 þX

x;k

hx;k þm
X

x

sxMx: (5)

The first term enforces the constraint of N xy ¼ n rishons

per link, with U � ~t. In a physical setup, this is imple-
mented as a strong repulsion between atoms occupying
rishon sites, indicated in Fig. 1(a) by the overlapping link
sites, and by potential offsets in the rishon sites. Details on
the lattice structure are discussed in the SM [24]. The
second term represents atomic hopping, while the last
term realizes the staggered fermion mass with a superlat-
tice. In second order perturbation theory in the tunnel
coupling, the above Hamiltonian induces the hopping
term of Eq. (4) with t ¼ ~t2=U. Figure 2(a) illustrates the
matter-gauge interaction. We note that an additional term

t
P

x;�kQ
y
x;�kQx;�k is also generated. This is no problem,

because this term is invariant under all relevant symme-
tries. It is also possible to add a 4-fermion term V

P
xM

2
x .

With the Hamiltonian of Eq. (5) we have reduced the
realization of UðNÞ QLMs to a lattice dynamics of inter-
acting fermions. This is enabled by the factorization of the
quantum link variables into rishons. We emphasize that the
building blocks in ~H are gauge invariant ‘‘meson’’ and
‘‘constituent quark’’ operators, which allows a gauge in-
variant implementation of the dynamics. This is in contrast
to previous work, where Gauss’s law was enforced by an
energy constraint in the microscopic dynamics. The essen-
tial symmetries of ~H to be respected by the implementation
are (i) the color-independent hopping of fermions and
rishons, and (ii) the color-independent interaction between
rishons to ensure the local particle number conservation on
each link. Indeed these symmetries are accurately
respected in setups with AE atoms [11,13,20].
For a given nuclear spin I, the electronic ground state

1S0 of fermionic AE atoms has 2I þ 1 Zeeman levelsmI ¼
�I; . . . ;þI. We encode the color degrees of freedom for
the even (odd) building blocks [triple wells in ð1þ 1ÞD and
cross-shaped vertices in ð2þ 1ÞD, represented by the light
(dark) shading in Fig. 1] in theN lowest (highest)mI levels
[cf. Fig. 1(c)]. For example, to implement a U(2) QLM, we
choose positive nuclear spin states mI ¼ 3=2, 1=2 on the
even and negative nuclear spin states mI ¼ �3=2, �1=2
on the odd building blocks. The AE atoms have the unique
property that their scattering is almost exactly SUð2Iþ 1Þ
symmetric; i.e., all pairs of states have the same scattering
length [11,13,20]. This guarantees the symmetry of the U
term in Eq. (5). The mI-dependent hopping illustrated in
Fig. 1(a) can be realized in optical lattices with an appro-
priate choice of laser frequencies and polarizations [29,30],
or with optical potentials obtained by holographic tech-
niques [31,32]. Finally, the repulsionU, which only affects
the rishon but not the quark sites, can be realized with
optical Feshbach resonances of AE atoms allowing
spatially dependent on-site interactions [33–39]. An alter-
native setup uses mI-dependent optical lattices with over-
lapping sites for the interacting and spatially separated sites
for the noninteracting fermions [cf. Fig. 1(d)].

(a) (b)

FIG. 2 (color online). Dynamical processes in U(2) QLMs
withN ¼ 2. (a) Matter-gauge interaction as correlated hopping
of quarks and rishons. Starting with a configuration of site
singlets, the matter-gauge interaction converts them into
nearest-neighbor singlets, keeping the rishon number per link
constant. (b) The determinant term corresponds to two-body
hopping of both rishons on the link.
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SUðNÞ lattice gauge theories.—We now reduce the
gauge symmetry from UðNÞ to SUðNÞ by activating the
detUxy term. For definiteness, we investigate the N ¼
N ¼ 2 case, for which detUxy ¼ 2c1x;þkc

1y
y;�kc

2
x;þkc

2y
y;�k.

This corresponds to two-particle tunneling between the
overlapping rishon sites. As indicated in Fig. 2(b), we
assume in our AE setup partially overlapping rishon sites
implying a different overlap of the Wannier functions. This
generates a repulsive interaction energy, which differs by
�U between rishons on the same and on different link
sites, thus breaking the SUð2I þ 1Þ symmetry. The two-
particle transfer is now implemented as a Raman process
with a Rabi frequency� and some large detuning �, so that
single-particle transitions are strongly suppressed, while a
two-particle transfer can be an energy conserving process
enabled by energy exchange between the atoms (see also
Ref. [40]). The resulting coefficient of the detUxy term is

� ¼ 2�2�U=�2, which should be larger than the typical
temperature scale in cold atoms experiments.

Initial conditions, loading the optical lattice, and imper-
fections.—We now discuss how to load the lattice with the
gauge invariant state illustrated in Fig. 1(e). This state has
local color-singlet pairs of atoms on alternating quark and
rishon sites. It is an eigenstate of the Hamiltonian

Hstrong ¼ m
X

x

sxc
iy
x c i

x þ �
X

hxyi
ðdetUxy þ H:c:Þ; (6)

which is induced by ~H in the limit U ! 1. The detUxy

term favors the state j"#; 0i � j0; "#i, where j"#; 0i ¼
c"yx;þc

#y
x;þj0; 0i and j0; "#i ¼ c"yy;�c#yy;�j0; 0i. The preparation

of the initial state requires one to adiabatically ramp up the
optical lattice on an ultracold cloud of atoms which are
internally in a 50% mixture of the states mI ¼ 3=2, 1=2.
This leads to a band insulator with two atoms of positive
nuclear spin on the dark-shaded sites in Fig. 1. Then, an on-
site Raman two-body process will generate the desired
state of Fig. 1(e) after a coherent transfer of the rishon
population from the dark- to the light-shaded rishon sites.

We have investigated the effect of imperfections in the
microscopic Hamiltonian on gauge invariance by perform-
ing exact diagonalization of small system size U(2) QLMs.
The results, extensively discussed in the SM [24], show
how the system preserves gauge invariance even in the
presence of relatively large imperfections, of order 10%
of the original parameters. Moreover, we emphasize that
the low-energy, many-body properties of the system are
expected to be robust in the presence of small gauge variant
terms (see, for instance, Ref. [41]).

Exact diagonalization results.—We have performed
exact diagonalization studies of the ð1þ 1ÞD U(2) model
withN ¼ 1 rishon per link. Figure 3(a) shows the splitting
between two almost degenerate vacuum states, which
decreases exponentially with the system size L, thus indi-
cating Zð2Þ chiral symmetry breaking. Figure 3(b) shows
the real-time evolution of the chiral order parameter profile

ð �c c Þx ¼ sxhc iy
x c i

x � N
2i, starting from an initial chirally

restored ‘‘fireball’’ embedded in the chirally broken vac-
uum. These dynamics can be observed by initializing the
system in a product state of Mott double wells, and sub-
sequently lowering the lattice potential. This mimics the
expanding quark-gluon plasma generated in a heavy-ion
collision, and can be probed in an experimental setup by just
monitoring the time dependence of the particle density,
similarly to Ref. [42].
Conclusions.—We have proposed an implementation of

a quantum simulator for non-Abelian UðNÞ and SUðNÞ
gauge theories coupled to staggered fermions with ultra-
cold atoms. The proposal builds on the unique properties of
quantum link models with rishons representing the gauge
fields: this allows a formulation in terms of a Fermi-
Hubbard model, which can be realized with multicompo-
nent alkaline-earth atoms in optical lattices, and where
atomic physics provides both the control fields and
measurement tools for studying the equilibrium and non-
equilibrium dynamics and spectroscopy. Extending such
investigations towards QCD requires the incorporation of
multicomponent Dirac fermions with the appropriate chiral
symmetries and additional link and plaquette terms for
electric and magnetic field energies [43].
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Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325
(2012).
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