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We study Bose-Hubbard models on tight-binding, non-Bravais lattices, with a filling of one boson per

unit cell—and thus fractional site filling. We discuss situations where no classical bosonic insulator, which

is a product state of particles on independent sites, is admitted. Nevertheless, we show that it is possible to

construct a quantum Mott insulator of bosons if a trivial band insulator of fermions is possible at the same

filling. The ground state wave function is simply a permanent of exponentially localized Wannier orbitals.

Such a Wannier permanent wave function is featureless in that it respects all lattice symmetries and is the

unique ground state of a parent Hamiltonian that we construct. Motivated by the recent experimental

demonstration of a kagome optical lattice of bosons, we study this lattice at 1=3 site filling. Previous

approaches to this problem have invariably produced either broken-symmetry states or topological order.

Surprisingly, we demonstrate that a featureless insulator is a possible alternative and is the exact ground

state of a local Hamiltonian. We briefly comment on the experimental relevance of our results to ultracold

atoms as well as to 1=3 magnetization plateaus for kagome spin models in an applied field.

DOI: 10.1103/PhysRevLett.110.125301 PACS numbers: 67.85.�d, 05.30.Jp

Introduction.—Much recent activity in condensed mat-
ter physics has focused on identifying nontrivial phases of
matter which are inherently quantum mechanical and can-
not be understood by perturbing around a straightforward
classical limit. Proposed systems where such phases might
occur include strongly correlated electronic systems, frus-
trated antiferromagnets, and insulating phases of bosonic
lattice systems, the last of which is our focus in this Letter.
Unlike fermions, bosons are precluded from forming non-
interacting band insulators, so all crystalline insulators
require interactions, hence the term ‘‘Mott insulators’’
[1]. Mott insulators realized at integer fillings of bosons
per site have a classical description deep within the insu-
lating state in terms of a fixed integer number of particles
per site, which means that, to find nontrivial states,
fractional site filling is desirable.

Theoretically, it has been proven [2,3] that insulators at
fractional filling per unit cell cannot be ‘‘featureless’’:
They form either crystals with an enlarged unit cell by
breaking lattice translation symmetry or exotic phases with
topological order—i.e., phases with emergent excitations
that carry unusual statistics. Experiments on cold atoms in
optical lattices have extensively explored Mott insulating
phases on a variety of simple lattices [4–7]. All these are
Bravais lattices, with one site per unit cell—so that the site
and unit cell fillings are identical—ruling out featureless
states at fractional site filling.

However, recently, more complicated optical lattices
with a basis—such as the honeycomb [8] and kagome [9]
structures—have been created, and the Mott and superfluid
states in them have begun to be studied. This naturally

leads us to consider fractional site filling, but integer unit
cell filling. Are symmetry breaking or topological order
still the only alternatives? We will study examples where
the answer is no, and yet quantum fluctuations of bosons
must be significant, even deep within a featureless insulat-
ing phase.
As an example of why a featureless Mott phase at

fractional site filling can be counterintuitive, consider the
kagome lattice at a filling of one boson per unit cell, or 1=3
site filling. Symmetries conflict with the usual caricature
of a Mott wave function, the essentially classical picture
of a fixed number of bosons tied rigidly to each site.
Attempting to draw such a classical cartoon on the kagome
at the given filling leads inevitably to symmetry breaking,
for example, a uniform (q ¼ 0) state that distinguishes a

single site in each triangle or the
ffiffiffi
3

p � ffiffiffi
3

p
order which

enlarges the unit cell (Fig. 1). Arbitrarily choosing a unit
cell, say, an upward-facing triangle, and delocalizing each
boson across this choice of sites gives a more quantum-
mechanical insulator but leads to a state which breaks
point-group symmetries—specifically, in this ‘‘triangular’’
state, that of rotation by 180� [10] (Fig. 1). Since the unit
cell has three sites, which in the tight-binding limit are
indivisible, one cannot write a state as a product of disjoint
‘‘molecules’’ while respecting the full sixfold point-group
symmetry. Finally, more sophisticated approaches that first
implement a duality transformation and then condense
vortices of the dual order parameter also break symmetry
at this filling [11]. Thus, for the kagome (and similar
examples), fractional site filling ensures that there is no
smooth connection to a trivial insulator. The usual
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strategies for constructing insulating phases always lead to
broken symmetry, and to date no featureless insulating
state has been found.

Here, we discuss a general scheme to write down wave
functions and parent Hamiltonians for a class of such fea-
tureless quantum Mott insulators, including the 1=3-filled
kagome as our primary example. Although we are inter-
ested in the problem of bosonic Mott insulators, we first
study the reference problem of fermions at the same filling
on the same lattice. If a band insulator of fermions exists,
for which exponentially localized Wannier orbitals (WOs)
that respect lattice symmetries can be constructed, then we
show that a bosonic Mott insulating state is also feasible.
The Mott insulating wave functions we construct are per-
manents [12] of these WOs—hence, we dub themWannier
permanentwave functions—and are analogous to fermionic
band insulating states, which are determinants of the same
orbitals. Furthermore, we demonstrate that these Wannier
permanent wave functions are exact ground states of sym-
metric, local Hamiltonians of the Bose-Hubbard type. As an
added bonus, the Bose-Hubbardmodels we discuss can also
be viewed as describing XXZ spin systems with fixed
magnetization (e.g., in an applied field), for which our
wave functions describe fractional magnetization plateaus
which do not enlarge the unit cell. On the 1=3-filled kagome
lattice, we first find a tight-binding model which at this
filling describes a band insulator and use this to construct
a Wannier permanent wave function for the insulating
phase. To the best of our knowledge, this is the first proposal
of a featureless ground state for this problem.

Identifying a lattice like the kagome is subtle from a
symmetry perspective: It entails taking the (experimentally
well-motivated) tight-binding limit. Absent this restriction,
the kagome, honeycomb, and triangular lattices are indis-
tinguishable, as they all have the same space group.
Formally, the tight-binding limit identifies a particular
representation of the symmetry, which contains more

information than the space group. We can understand this
intuitively: The kagome is a non-Bravais lattice with three
sites per unit cell. Although solving a tight-binding model
entails a specific choice of inequivalent sites to form the
crystal basis (which breaks lattice symmetry), the final
many-body band insulating wave function for fermions is
independent of this choice and respects symmetries. In
contrast, choosing orthogonal real-space orbitals to build
a bosonic permanent is more sensitive; e.g., up- and down-
triangle permanents are distinct, and both break 180�
rotation symmetry. Thus, restrictions placed by tight bind-
ing and the symmetrization of many-body bosonic wave
functions make constructing featureless Bose insulators
challenging, in contrast to the more usual case of fermionic
band insulators.
The wave functions we study are in a sense bosonic

analogs of the Affleck-Kennedy-Lieb-Tasaki states [13,14]
of spin systems, which are quantum-mechanical paramag-
nets. As noted in Ref. [15], the Affleck-Kennedy-Lieb-
Tasaki insulators are ‘‘fragile’’ Mott insulators of electrons,
which cannot be adiabatically connected to band insulators
without breaking a crystalline point-group symmetry.
Similarly, our wave functions cannot be deformed into
disjoint product states without breaking translational or
point-group symmetry. However, since we discuss bosons,
in contrast to Ref. [15], we cannot consider a noninteracting
limit, whatever the symmetry. We note previous work [16]
that used power-law localized WOs to study Bose conden-
sation and charge-density-wave order in the kagome flat
band is unrelated to the featureless insulators we discuss.
Fermionic band insulators as bosonic Mott insulators.—

Given a set of symmetric, exponentially localized WOs
gRðiÞ, withR a Bravais lattice vector and i a lattice site, the
Wannier permanent wave function for a bosonic Mott

insulator takes the form j�Wi ¼
Q

Rw
y
Rj0i, where wy

R �P
igRðiÞbyi adds a boson to the WO atR. j�Wi is the exact

ground state of a parent Hamiltonian given by an interac-
tion between densities projected into the WO basis. The
correlation function can be expressed as a projector over
the occupied band

hbyi bji�W
¼ X

R

g�RðiÞgRðjÞ ¼ P occðj; iÞ (1)

and decays exponentially hbyi bji � e�ji�jj=�, with �

related to the localization length of the WOs. Higher-
body correlators can be similarly computed and also decay
exponentially.
WOs are constructed by integrating Bloch wave func-

tions over the Brillouin zone (BZ), with an arbitrary phase
choice ’k at each wave vector k [17]. For fermions, the
fact that the different WOs are related to each other and
to the single-particle Bloch eigenstates by unitary trans-
formations means that ‘‘filling’’ any such complete set
of single-particle states in the lowest band and then anti-
symmetrizing yields the same insulating wave function, as

FIG. 1 (color online). (a) Kagome lattice and notation used in
the text. The standard methods to construct featureless phases
break symmetries, e.g., (b) the

ffiffiffi
3

p � ffiffiffi
3

p
state and (c) the trian-

gular ‘‘molecular orbital’’ state.
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the resulting Slater determinants are all unitarily equiva-
lent. However, symmetrized permanents such as j�Wi are
not unitarily equivalent for different choices of gRðiÞ,
making the choice of single-particle states to fill crucial:
Permanent wave functions for featureless Bose insulators
must be built from localized and symmetric single-particle
states.

To preserve symmetry, we must be able to fix the choice
of localized WOs unambiguously. For a simple band—one
that touches no other bands—respecting time reversal and
inversion symmetry [18] fixes ’k up to an overall sign,
which is fixed by requiring continuity of ’k across the BZ,
a necessary condition for exponential localization [19–22].
Whenever a fermionic band insulator exists at a given
filling, we can find such a set of WOs giving a symmetric
insulating ground state and corresponding local parent
Hamiltonian—a significant and hitherto unnoticed aspect
of bosonic Mott physics.

Kagome lattice.—To use this approach for the kagome
lattice at 1=3 filling, we must find a fermionic band insu-
lator (separated lowest band) on the kagome. We consider

the general case H0½ftijg� � �P
i;jtijb

y
i bj on the kagome

lattice, where the tij are assumed to respect all the symme-

tries of the lattice. H0 has three bands, and, with only
nearest-neighbor hopping (t1), the two lower bands form
gapless Dirac points (Fig. 2). Mass terms that can gap out
the Dirac points break inversion or threefold lattice sym-

metry (triangular and
ffiffiffi
3

p � ffiffiffi
3

p
states; see Fig. 1).

However, as second- and third-neighbor hoppings (t2, t3)
are increased from zero, the bands become degenerate at
K, K0 when t2 ¼ t3 ¼ 1

2 t1; thereafter, the lowest band is

simple, with the twofold K-point degeneracy transferred to
the upper two bands (see Fig. 2). (For a symmetry analysis,

see Supplemental Material [23].) This procedure preserves
lattice symmetry, providing symmetric WOs for the lowest
band.
Wannier permanent wave functions.—For clarity, we

focus initially on a fine-tuned point [24,25], where t1 ¼
t2 ¼ t3 ¼ t=6 and the on-site potential tii ¼ t=3; our
results persist away from this point as long as the lowest

band remains simple. We may rewrite H0 as H0 ¼
�t

P
Rd

y
RdR by defining operators that ‘‘smear’’ a boson

over a single hexagon (Fig. 1 depicts dyR for R ¼ �a2):

dyR � 1ffiffiffi
6

p X
�¼1;2;3

ðbyR;� þ byR�a�;�
Þ: (2)

Here, R ¼ ma1 þ na2 lies on the triangular Bravais lat-
tice; a1, a2, and a3 � �ða1 þ a2Þ are shown in Fig. 1; and
� ¼ 1, 2, 3 labels inequivalent sites within a unit cell, so

that a kagome site i � ðR; �Þ. Since ½dR; dyR0 � � �R;R0 , the

dyR operators are not canonical bosons and we cannot form

a Fock space out of eigenstates of dyRdR. However, in
momentum space, H0 ¼ �t

R
BZ

d2q
ð2�Þ2 d

y
qdq, where dyq ¼

N�1=2
s

P
Re

�iq�RdyR with Ns the number of sites. By a

straightforward computation, ½dq; dyq0 � ¼ �ðqÞ�q;q0 , with

�ðqÞ ¼ 1þ 1
3

P3
i¼1 cosðq � aiÞ. Since everywhere in the

BZ �ðqÞ � 0, its inverse is nonsingular and we may define
~dyq � ½�ðqÞ��1=2dyq , so that H0 ¼ �t

R
BZ

d2q
ð2�Þ2 �ðqÞ~dyq ~dq,

now in terms of canonical bosons ½~dq; ~dyq0 � ¼ �q;q0 . H0

has a single band of dispersing states created by ~dyq with

energy�t�ðqÞ that is gapped away from E ¼ 0. In writing
H0 in this form, we have chosen a specific superposition of
states in a unit cell and therefore a specific Bloch band. The
two orthogonal states in the remaining Bloch bands form a
pair of zero-energy flat bands (Fig. 2). H0 respects all the
kagome lattice symmetries, and its lowest band is mani-
festly simple, as discussed above.
A single boson is placed in the WO atR by the operator

wy
R � 1ffiffiffiffiffiffi

Ns

p
Z
BZ

d2q

ð2�Þ2 e
iq�R ~dyq ¼ X

R0;�
gRðR0; �Þby

R0;�: (3)

Here, the function

gRðR0; �Þ ¼
Z
BZ

d2q

ð2�Þ2
1þ eiq�a�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns�ðqÞ

p eiq�ðR0�RÞ (4)

characterizes the spatial structure of the WOs (Fig. 2). It is
easily verified from (3) that the wR are canonical boson

operators, i.e., ½wR; w
y
R0 � ¼ �R;R0 . Filling one boson in

eachWO gives theWannier permanent wave function [26].
Finally, each individual WO respects the point-group

symmetry, as we can explicitly verify. Translations only
map one WO into another, and therefore a product over
all the WOs is invariant under the entire space group of the
lattice, as is an arbitrary sum of such products, which

FIG. 2 (color online). (a) Evolution of the tight-binding band
structure of H0; for the nearest-neighbor hopping (top), all bands
touch, while, at the special point t1 ¼ t2 ¼ t3 (bottom), the
lowest band is isolated and is especially tractable. (b) WO
plotted on the lattice. The size of the circles gives jgRðiÞj;
blue (red) circles depict gRðiÞ> 0 (< 0). The exponential decay
of the boson correlator hbyr b0i is also shown below the WO.
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includes a permanent wave function of the form j�Wi.
Thus, we conclude that j�Wi represents a featureless
Mott insulator at filling 1=3 [27]. If we vary the parameters
tij away from the special point, the WOs will change.

Nevertheless, as long as the WOs can be chosen to be
symmetric and exponentially localized, the corresponding
Wannier permanent wave function remains featureless
and has exponentially decaying correlations. We thus
have a family of Wannier permanent wave functions,
each characterized by the hopping Hamiltonian H0.

Parent Hamiltonian.—We construct a Hamiltonian for
which the Wannier permanent wave function j�Wi is an
exact ground state. We do this by first constructing a new
noninteracting Hamiltonian H0

0, which flattens the disper-

sion of the lowest band while leaving its wave functions
unaffected. Now, the WOs are actually single-particle
eigenstates. We tune the chemical potential � to be just
above the lowest band. This leads to a massive ground state
degeneracy, which is lifted by adding appropriate interac-
tion terms that ensure the single occupancy of the WOs,
thus selecting j�Wi as the ground state.

We begin with the tight-binding problem H0 and from it

obtain the operatorswy
R. Using these, we construct a differ-

ent single-particle Hamiltonian H0
0 ¼ �V

P
Rw

y
RwR �

�N̂, where N̂ is the total boson number. Using (3), H0
0

can be expressed as a symmetric hopping model on the
kagome lattice, whose locality follows from localization of
the WOs. Matrix elements of H0

0 decay exponentially

(identically to hbyi b0i, as shown in Fig. 2), and hopping

between sites on nonadjacent hexagons is & 3% of that
between nearest neighbors. It is readily verified that H0

0

may be rewritten as H0
0 ¼ �P

R½ð�þ VÞn̂wR þ�ðn̂u1R þ
n̂u2R Þ�, where n̂wR ¼ wy

RwR represents the occupation of

the WO of the lowest band at Bravais lattice site R and
n̂
u1;2
R are occupations of the WOs of the two upper bands.
For �V <�< 0 in H0

0, only the nwR are nonzero. There

are many ways to fill the WOs of the lowest band with
bosons, leading to a huge degeneracy of many-body states.
We lift this by adding to H0

0 an interaction that penalizes

multiple occupancy of a WO. This is accomplished by a
term Hint ¼ U

2

P
Rn̂

w
Rðn̂wR � 1Þ. In terms of WOs, this is the

familiar Hubbard interaction stabilizing a Mott phase with
a fixed occupancy of eachWO, but it corresponds to a more
intricate interaction in terms of the site operators of the
underlying kagome lattice [23]. LikeH0

0,Hint is local in the

sense that interactions between sites decay exponentially
with their separation. It is easy to show that j�Wi is
the ground state of HW � H0

0 þHint for �V <�<
minð0; U� VÞ [28]. It is also clear that all excitations
above the ground state are gapped. It is evident that j�Wi
is the unique state satisfying these properties on the torus,
so it is not topologically ordered as it has no ground state
degeneracy. In summary, we have shown that j�Wi is the
unique gapped and symmetric ground state of

HW ¼ �V
X
R

n̂wR þU

2

X
R

n̂wRðn̂wR � 1Þ ��N̂ (5)

for�V <�<minð0; U� VÞ. An equivalent Hamiltonian
can be obtained by first flattening the lowest band and then
projecting a Hubbard interaction into it [29–31]. HW is
intricate and presently challenging to realize experimen-
tally (see below). Numerical study of simpler proximate
Hamiltonians that may yield featureless phases is left to
future work.
Experimental realization.—A natural experimental set-

ting for Bose-Hubbard physics is in ultracold atomic gases
in optical lattice potentials [4]. The kagome geometry was
achieved recently in an experimental setup using an optical
superlattice and was characterized by studying properties
of an atomic superfluid with such a lattice [9]. Mott insu-
lating states within this optical lattice have been recently
observed [32].
Methods suitable for identifying an insulating state with

fractional filling have been demonstrated for atoms in
simple Bravais lattices. For example, Mott insulating states
at various fillings can be identified by observing plateaus in
the density of a lattice-trapped gas within an inhomoge-
neous potential [6,7]. The underlying geometry of the
insulating state can be probed via momentum-resolved
correlations in the measured atomic density [5], a method
that can be employed to check against broken-symmetry
states.
However, the fine tuning of next- and next-next-nearest-

neighbor hopping in such lattices may be difficult to
achieve. One approach may be to utilize Feshbach reso-
nances to increase the interaction strength so that a critical
ratio of interaction to kinetic energies can be reached
already in a very shallow optical lattice, where substantial
higher-order tunneling may still occur. Alternately, return-
ing to the analogy between bosonic tunneling and spin
models, longer-range interactions can be achieved and
tuned in lattice-trapped gases of polar molecules [33] or
Rydberg atoms. Although j�Wi is not sign positive, a
related sign-positive wave function—potentially with bet-
ter variational energies—exists in the same phase, albeit
without a corresponding parent Hamiltonian [34].
We note that there are candidate materials where it is

believed that the spin physics is captured by the isotropic
kagome lattice Hamiltonian. By exploiting the connection
between the Bose-Hubbard model and a spin system in an
applied field, the wave functions we consider here are
natural candidates for featureless fractional magnetization
plateaus in such materials—particularly since their non-
trivial sign structure suggests that they will give good
variational energies [35].
Concluding remarks.—Although we have focused on a

specific example of a non-Bravais Bose-Hubbard model,
the kagome lattice at 1=3 site filling, the path to general-
izing our results is clear. For a lattice with a q-site unit cell,
it is possible to construct a Wannier permanent at filling
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1=q if we can construct symmetric, exponentially localized
WOs for the lowest band. The first step is to find a tight-
binding model whose lowest band is simple, which often
requires going beyond nearest-neighbor hopping, as the
kagome teaches us [36]. In general, whether such a model
exists depends on symmetries, as discussed above. For
example, on the 1=2-filled honeycomb lattice, the two
bands that touch in the nearest-neighbor limit form a
two-dimensional irreducible representation; as there is no
third trivial band to which the degeneracy may be trans-
ferred, the touching cannot be removed without symmetry
breaking [23], and, on nonsymmorphic lattices, featureless
phases are impossible except at special integer fillings [37].

We note in closing that the kagome lattice WO is maxi-
mal on the hexagon of sites centered on Bravais lattice site
R and decays rapidly away from it (Fig. 2). This suggests

that the wave function j�i ¼ Q
Rd

y
Rj0i obtained by filling

‘‘truncated’’ orbitals restricted to a hexagon remains in
the same phase as j�Wi. Verifying this conjecture requires
a numerical evaluation of correlations in the state j�i,
which is a significant problem in its own right. One can
by analogy construct a featureless insulating wave function
on the honeycomb lattice, even though the Wannier con-
struction fails [23,34].
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