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Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited

simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a

three-dimensional effective theory derived by combined strong coupling and hopping expansions, which

is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree

between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign

problem. Our continuum extrapolated data approach a first order phase transition at �B � mB as the

temperature approaches zero. An excellent description of the data is achieved by an analytic solution in

the strong coupling limit.
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QCD at zero temperature is expected to exhibit the so-
called silver blaze property: when a chemical potential for
baryon number �B is switched on in the grand canonical
partition function, initially all observables should be com-
pletely independent of �B. This changes abruptly once the
chemical potential exceeds a critical value �Bc, for which
the baryon number jumps from zero to a finite value and a
transition to a condensed state of nuclear matter takes
place. The reason for this behavior is the mass gap in the
fermionic spectrum, where the nucleon massmB represents
the lowest baryonic energy that can be populated once
�B � mB. While this picture is easy to see in terms of
energy levels of nucleons in a Hamiltonian language, it is
elusive in the fundamental formulation of QCD thermody-
namics in terms of a path integral. There, chemical poten-
tial enters through the Dirac operators of the quark fields,
and hence all Dirac eigenvalues are shifted for any value of
�B. The silver blaze property thus requires some exact
cancellations for �B <mB.

An analytic derivation of the silver blaze property from
the path integral exists only for the related case of finite
isospin chemical potential �I ¼ �u ¼ ��d [1], where
Bose-Einstein condensation of pions sets in at �I ¼
m�=2. A numerical demonstration of the effect by means
of lattice QCD has so far been impossible due to the so-
called sign problem. For finite baryon chemical potential
the action becomes complex, prohibiting its use in a
Boltzmann factor for Monte Carlo approaches with impor-
tance sampling. Several approximate methods have been
devised to circumvent this problem. These are valid in the
regime � & T, where they give consistent results (for
a recent review see Ref. [2]). However, the cold and dense
region of QCD has so far been inaccessible to lattice
simulations. A method avoiding importance sampling is
stochastic quantization, where expectation values are
obtained from equilibrium distributions of stochastic pro-
cesses governed by a Langevin equation [3]. While this
works for several models with a sign problem [4], it is not

generally valid for complex actions [5]. Using Langevin
dynamics, the silver blaze property has been numerically
demonstrated for the Bose condensation of complex scalar
fields [6]. This was recently reproduced using a worm
algorithm on the flux representation of the complex action,
which is free of the sign problem [7].
In this Letter we show that cold and dense lattice QCD is

accessible within a 3D effective theory of Polyakov loops,
which has been derived from the full lattice theory with
Wilson fermions by means of strong coupling and hopping
parameter expansions [8,9]. The pure gauge part reprodu-
ces the critical temperature Tc of the deconfinement tran-
sition in the continuum limit to a few percent accuracy [8].
The theory was extended to include heavy but dynamical
Wilson quarks. The sign problem of the resulting effective
theory being under full control, the finite-temperature
deconfinement transition, including its surface of end-
points, was located for all chemical potentials. The critical
quark mass corresponding to �B ¼ 0 was again found to
quantitatively agree with full 4D Wilson simulations [9].
The current restriction to large quark masses ensures the
validity of the hopping expansion, we comment on possible
extensions later.
The lattice QCD partition function with Wilson gauge

action Sg½U� and f ¼ 1; . . . ; Nf quark flavors with Wilson

fermion matrix Qð�f;�fÞ can be written as

Z ¼
Z
½dU��

Y
f

det½Q�e�Sg½U� ¼
Z
½dW�e�Seff ½W�;

Seff ¼ Sseff þ Saeff ; Sseff½W� ¼ �X1
i¼1

�iS
s
i ½W�;

Saeff½W� ¼ 2
XNf

f¼1

X1
i¼1

�
hifS

a
i ½W� þ �hifS

a;y
i ½W�

�
; (1)

defining a 3D effective action by integration over the
spatial link variables. The Ss;ai ½W� depend on temporal
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Wilson lines WðxÞ ¼ QN�

�¼1 U0ðx; �Þ, and the Ssi are ZðNcÞ
symmetric while the Sai are not. The couplings of the
effective theory are functions of the temporal extent N�

of the 4D lattice, the fundamental representation character
coefficient uð�Þ ¼ �=18þOð�2Þ with lattice gauge cou-
pling � ¼ 2Nc=g

2 and the hopping parameters �f, which

for heavy quarks are related to the quark masses as �f ¼
expð�amfÞ=2. Moreover, �hifð�fÞ ¼ hifð��fÞ. The cou-

plings are then ordered by increasing powers of their
leading contributions. Up to several nontrivial orders, the
gauge sector is dominated by the nearest-neighbor interac-
tion between Polyakov loops Li ¼ TrWðxiÞ,

e�Ss
eff
½W� ¼ Y

hiji
½1þ 2�ReLiL

�
j �; (2)

�ðu;N��5Þ¼uN� exp

�
N�

�
4u4þ12u5�14u6�36u7

þ295

2
u8þ1851

10
u9þ1055797

5120
u10þ���

��
:

(3)

The convergence properties of the existing terms as well as
an explicit comparison with full 4D thermal simulations
demonstrate that for� & 6:5 the pure gauge sector is under
control and the effect of higher couplings is negligible for
N� * 6 [8]. When fermions are present, � is shifted by
Oð�4Þ corrections, which we neglect here.

The ZðNcÞ-breaking terms can be written as factors

e�Sa
eff
½W� ¼ Y

n

�n½W�: (4)

Summing all windings of the temporal loops this reads

�1 ¼
Y
f;i

det½1þ h1fWi�2½1þ �h1fW
y
i �2;

�2 ¼
Y
f;hiji

�
1� h2fN�Trc

Wi

1þ CfWi

Trc
Wj

1þ CfWj

�
2
; (5)

with the couplings

h1f ¼ Cf

�
1þ 6�2

fN�

u� uN�

1� u
þ � � �

�
;

h2f ¼ C2
f

�2
f

Nc

�
1þ 2

u� uN�

1� u
þ � � �

�
; (6)

Cf � ð2�fe
a�f ÞN� ¼ eð�f�mfÞ=T , �Cfð�fÞ ¼ Cfð��fÞ.

From now on we consider Nf ¼ 1 and drop the index

‘‘f’’ (i.e., � ¼ �B=3), which is sufficient to see the essen-
tial features. Finally we need meson and baryon masses,

amM ¼ �2 lnð2�Þ � 6�2 � 24�2 u

1� u
þ � � � ;

amB ¼ �3 lnð2�Þ � 18�2 u

1� u
þ � � � : (7)

Let us begin our analysis of the cold and dense regime
with the combined static and strong coupling limit. In this

case we have � ¼ � ¼ 0 and the partition function
factorizes into exactly solvable single site integrals:

Zð� ¼ 0Þ ¼
�Z

dWð1þ CLþ C2L� þ C3Þ2

� ð1þ �CL� þ �C2Lþ �C3Þ2
�
N3

s ¼ Z
N3

s

1 : (8)

The group integration only yields nonzero results if the
trivial representation is contained in the products of loops.
This results in the survival of hadronic degrees of freedom
only,

Z1 ¼ ½1þ 4C3 þ C6� þ 2C½2þ 3C3� �C
þ 2C2½5þ 3C3� �C2 þ 2½2þ 10C3 þ 2C6� �C3

þ 2C½3þ 5C3� �C4 þ 2C2½3þ 2C3� �C5

þ ½1þ 4C3 þ C6�3 �C6 !T!0½1þ 4CNc þ C2Nc�: (9)

We recognize the partition function of an ideal gas of
baryons (	 C3), mesons ( �CC) and composites of those,
as already discussed in Ref. [10]. For finite chemical
potential and zero temperature, �C ! 0, we are left with
baryons and have reinstated Nc to illustrate the meaning of
the exponents. Prefactors are identified as spin degeneracy;
i.e., we have a spin-3=2 quadruplet for the three-quark
baryon and a spin-zero baryon made of six quarks.
The quark density is now easily calculated,

n ¼ T

V

@

@�
lnZ ¼ 1

a3
4NcC

Nc þ 2NcC
2Nc

1þ 4CNc þ C2Nc
: (10)

In the high density limit the expression reduces to

lim
�!1ða

3nÞ ¼ 2Nc � Ncða3nB;satÞ: (11)

As required for fermions obeying the Pauli principle, the
quark density in lattice units saturates once all available
states per lattice site labeled by spin and color (and flavor
for Nf > 1) are occupied. Note that summation over all

windings of the Wilson lines is necessary in order to obtain
a determinant in the form Eq. (5), while a truncation to
finite order would not show saturation. Next, consider
finite chemical potential and the zero temperature limit,

lim
T!0

a4f ¼
�
0; � < m

2Ncðam� a�Þ; � > m
;

lim
T!0

a3n ¼
�
0; � < m

2Nc; � > m
: (12)

Thus the static strong coupling limit shows the silver
blaze property, with zero quark density for �<m and a
jump to saturation density for �>m, corresponding to a
first order phase transition at quark chemical potential
�c ¼ m. In the static strong coupling limit the baryon
mass is amB ¼ �3 lnð2�Þ ¼ 3am; i.e., the onset happens
at �B ¼ mB and satisfies the bounds in Ref. [11].
(For static quarks, mB=3 ¼ m�=2). In the dense phase
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the free energy scales with Nc, consistent with the con-
jecture in Ref. [12]. For T � 0 the step function is smeared
out and the transition becomes smooth, as expected for a
noninteracting system.

Next we consider the interacting theory toOð�2Þ at finite
gauge coupling and quark mass. In this case the partition
function has to be computed numerically and for finite
values of N�; i.e., the zero-temperature limit has to be
approached numerically. The effective theory features a
sign problem, which however is mild compared to that of
the full 4D theory and can be overcome by reweighting
methods using a standard Metropolis algorithm. For
h2f ¼ 0 the effective theory can be cast into a flux repre-

sentation and simulated with the worm algorithm, without
any sign problem. The two approaches gave consistent
results for the deconfinement transition at finite tempera-
ture and density [9]. Here we include h2 � 0, as it is the
first coupling of quark-quark terms	LðxÞLðyÞ. In this case
we could not find a flux representation free of the sign
problem and instead employ complex Langevin simula-
tions as an independent check. Indeed, that algorithm has
been shown to work for a simple SUð3Þ one-site model as
well as QCD in the heavy dense limit [4], which have
structures very similar to our effective theory. All our
simulations satisfy the convergence criterion in terms of
the Langevin operator specified in Ref. [13].

In order to reach continuum QCD, we work at small
parameters � & 10�3, close to but not in the static limit. In
this case we can use the nonperturbative beta function of
pure gauge theory for the lattice spacing in units of the
Sommer parameter, að�Þ=r0 with r0 ¼ 0:5 fm [14].
Moreover, near the static limit Eq. (7) gives a good ap-
proximation to the hadron masses. Finally, temperature is
tuned via T ¼ ðaN�Þ�1. To begin, let us consider T ¼
10 MeV and m� ¼ 20 GeV. Because of the short
Compton wavelength, small lattices are sufficient for
baryonic quantities, with negligible differences between
Ns ¼ 3, 6. Once the lattice spacing is chosen,� is fixed and
Eq. (7) determines the corresponding �ð�Þ.

Figure 1 shows the baryon density in lattice units as a
function of chemical potential in units of the baryon mass
for � ¼ 5:7. It is consistent with zero until the chemical
potential approachesmB=3, where a transition or crossover
is clearly visible which quickly reaches saturation level.
The rise in the baryon density is accompanied by a rise in
the Polyakov loop. This feature was also seen in 4D
Langevin simulations [4] and in the chiral strong coupling
limit in the staggered discretization [15]. By contrast, in
two-color QCD with lighter masses Bose condensation and
the rise of the Polyakov loop appear to reflect two distinct
transitions [16]. It is not clear to us whether the rise of the
Polyakov loop signals deconfinement in the presence of
matter. Evaluating hL�i, hLi using Eq. (8) with �C ¼ 0, the
Polyakov (conjugate) loop gets screened by the third
(second) terms without changing the nature of the medium,

which is hadronic. This also explains why L� is screened
before L when �> 0, while the opposite happens for
�< 0. The ensuing decrease is a consequence of satura-
tion: all color orientations get populated once the lattice
approaches filling. All quantities in Fig. 1 agree between
the Metropolis and Langevin algorithms, the latter is vastly
superior on larger volumes.
It is very striking that the numerical results are repro-

duced excellently by the analytic solution to the free, static
hadron gas discussed earlier. That the static limit works
well is easy to understand, since our quarks are exceed-
ingly heavy and Oð�2Þ corrections are tiny. What is less
obvious is that a simulation at � ¼ 5:7 is well approxi-
mated by the strong coupling limit, � ¼ 0. The reason is
that the effective coupling of the gauge sector �ð� ¼
5:7; N� ¼ 115Þ 	 10�27. This is an important observation.
The convergence of the strong coupling expansion is suffi-
ciently fast to allow for an accurate estimate of the con-
vergence radius �c < 6 for N� 
 16 in Ref. [8]. For � in
the same range, lowering temperature increases N� and
thus improves convergence in two ways: we move away
from the limiting convergence radius and uð�Þ< 1 gets
suppressed by ever higher powers. In other words, cold
QCD is more amenable to the strong coupling expansion
than hot QCD, and the pure gauge sector plays a negligible
role for the dynamics.
Simulations of the effective theory being cheap, we have

computed the baryon density for nine gauge couplings
5:7<�< 6:1, corresponding to lattice spacings
0:17 fm> a> 0:07 fm. The scaling of the result in physi-
cal units is shown in Fig. 2. Since the quark density is a
derivative of the physical pressure with respect to an
external parameter, it is a finite quantity that does not
renormalize in a nonperturbative calculation. (The pressure
requires subtraction of divergent vacuum energies,

0.994 0.996 0.998 1 1.002

0.2

0.4

0.6

0.8

1

1.2

µ
B
 / m

B

n
B
 / n

B,sat
, MC

Langevin
static limit
< L >, MC
Langevin
static limit

< L∗ >, Langevin
static limit

FIG. 1 (color online). Baryon density nB=nB;sat, Polyakov loop
hLi and conjugate Polyakov loop hL�i as a function of �B=mB

obtained from Monte Carlo calculations (Ns ¼ 3), complex
Langevin (Ns ¼ 6) and the static strong coupling limit, respec-
tively. Lattice parameters � ¼ 5:7, � ¼ 0:0000887, N� ¼ 116
correspond to mM ¼ 20 GeV, T ¼ 10 MeV, a ¼ 0:17 fm.
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pphysðTÞ ¼ pðTÞ � pð0Þ; however, these are � indepen-

dent and @�pphys is finite.) Massive Wilson fermions

have OðaÞ lattice corrections; hence, the continuum
approach is

nB;latð�Þ
m3

B

¼ nB;contð�Þ
m3

B

þ Að�Þaþ Bð�Þa2 þ � � � (13)

This behavior is borne out by the data for a > 0:09 fm in
Fig. 2. On the other hand, for a ! 0 we see a downward
bend that violates scaling and signals that our truncated
series in �, � are no longer valid: as the lattice gets finer, �
and �ð�Þ grow and our effective action eventually must
fail. Adding or removing Oð�2Þ corrections indeed affects
this downward bend, but not the rest of the curve. Note that
there is a trade-off between � and �. The lighter we make
the quark mass, the larger � for a given lattice spacing
and the earlier the breakdown of the hopping expansion.
Thus the scaling behavior of the baryon density tells us
when our effective theory breaks down.

For the very heavy quarks studied here, our series are
controlled for lattice spacings down to a * 0:09 fm, which
is just entering the regime with leading order lattice cor-
rections. Cutting our data for a < 0:09–0:11 fm, we per-
form continuum extrapolations based on five to seven
lattice spacings by fitting to Eq. (13). We have followed
this procedure for four different temperatures, resulting in
the baryon densities in Fig. 3. Clearly, the silver blaze
property and a jump in baryon density get realized also
in the interacting, dynamical theory as the temperature
approaches zero. Interestingly, the saturation density be-
yond onset, when expressed in units of mB, is of the same
order of magnitude as the physical nuclear density
	0:16 fm�3 � 0:15� 10�2 m3

proton. Finite size analyses

using Ns ¼ 3, 4, 6, 8 show that the onset at T ¼
2:5 MeV is still a smooth crossover; i.e., T is too high
for a first order transition. Presently T cannot be drastically

reduced because �2 corrections to the determinant get
enhanced 	N�, Eq. (5). For physical quark masses the
onset transition persists up to T 	 10 MeV. More work is
needed to study whether this difference is due to the larger
quark mass or to the truncation of the hopping series.
For light quarks, our truncated hopping series is not

reliable. How far the series can be extended and whether
the pure gauge sector is similarly suppressed remains to be
seen. We plan to address �4 corrections and details of the
Langevin simulations in a future publication.
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B as a function of
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zero temperature limit a jump to nuclear matter builds up.

PRL 110, 122001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 MARCH 2013

122001-4

http://dx.doi.org/10.1103/PhysRevLett.91.222001
http://dx.doi.org/10.5506/APhysPolBSupp.5.825
http://dx.doi.org/10.1088/1126-6708/2008/09/018
http://dx.doi.org/10.1088/1126-6708/2008/09/018
http://dx.doi.org/10.1016/0370-1573(87)90144-X
http://dx.doi.org/10.1103/PhysRevLett.102.131601
http://dx.doi.org/10.1016/j.nuclphysb.2012.12.005
http://dx.doi.org/10.1007/JHEP02(2011)057
http://dx.doi.org/10.1007/JHEP02(2011)057
http://dx.doi.org/10.1007/JHEP07(2011)014
http://dx.doi.org/10.1007/JHEP01(2012)042
http://dx.doi.org/10.1007/JHEP04(2010)055
http://dx.doi.org/10.1007/JHEP04(2010)055
http://dx.doi.org/10.1016/j.nuclphysa.2007.08.013
http://dx.doi.org/10.1016/j.nuclphysa.2007.08.013
http://dx.doi.org/10.1103/PhysRevD.81.054508
http://dx.doi.org/10.1103/PhysRevD.81.054508
http://dx.doi.org/10.1007/JHEP01(2012)118
http://dx.doi.org/10.1007/JHEP01(2012)118
http://dx.doi.org/10.1016/S0550-3213(01)00582-X
http://dx.doi.org/10.1103/PhysRevD.81.091502
http://dx.doi.org/10.1103/PhysRevD.81.091502

