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Planar N ¼ 4 supersymmetric Yang-Mills theory appears to be integrable. While this allows one to

find this theory’s exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes.

To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-

point function turns out to be essentially the one-loop R matrix of the integrable N ¼ 4 spin chain

satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R

matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter

might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its

physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger

class of nonintegrable four-dimensional field theories.

DOI: 10.1103/PhysRevLett.110.121602 PACS numbers: 11.55.�m

Introduction.—Amazing features have been discovered
in the last years in studying the structure of planar maxi-
mally supersymmetric Yang-Mills theory (N ¼ 4 SYM).
The discovery of a hidden dual superconformal symmetry
[1], after combining with the conventional superconformal
symmetry into a Yangian structure [2], points to an under-
lying integrability. This structure is deeply connected to the
Graßmannian formulation of scattering amplitudes [3,4].
Here the tree-level n-pointNk�2 maximal helicity violating
(MHV) amplitudes can be written as

Atree
n;k ¼

I Q
k
a¼1

Q
n
i¼kþ1 dcai

M1M2 � � �Mn

�4j4ðCðk;nÞ �ZÞ; (1)

whereZA
i are the supertwistor variables ( ~��

i ,
~� _�
i ,�

A
i ) with

~��
i the Fourier conjugate to ��

i , and A is a fundamental
index of glð4j4Þ. Recall that the momenta of scattering

amplitudes are expressed as p� _�
i ¼ ��

i
~� _�
i , and �A

i are
Graßmann variables. Moreover, Cðk;nÞ stands for a (k� n)
matrix of the complex parameters cai, and the first k
columns have been fixed to a unit matrix using the GLðkÞ
symmetry of the integral. By Mi we denote the (k� k)
minors of the Cðk;nÞ matrix. In a remarkable, very recent

construction [5] all amplitudes are argued to be construc-
tible to arbitrary loop order in terms of basic on-shell
building blocks through Britto-Cachazo-Feng-Witten
recursion relations [6]. More precisely, any amplitude at
arbitrary but fixed loop order is expressible as a sum over
suitable on-shell diagrams obtained by appropriately link-
ing MHV and MHV three-point amplitudes and subse-
quently integrating out all on-shell supertwistor variables
on internal links.

In a seemingly unrelated recent development, a connec-
tion between tree-level amplitudes and the complete
one-loop dilatation operator was pointed out in Ref. [7].
In particular, the Hamiltonian of the N ¼ 4 spin chain
was shown to be related to the tree-level four-point ampli-
tude. Being integrable, this nearest-neighbor Hamiltonian
is generated by an Rmatrix satisfying the celebrated Yang-
Baxter equation [8]. After defining monodromy matrices,
Rmatrices serve as an alternative, and from the perspective
of scattering processes more natural, way to define the
Yangian algebra. The crucial feature of R matrices is their
dependence on a complex parameter called spectral
parameter. Until now, the fundamental question of how to
insert the spectral parameter into the scattering amplitude
problem had not yet been asked, let alone answered. In this
Letter we fill this gap by first unifying and generalizing the
mentioned developments. We then proceed to the inves-
tigation of radiative corrections to scattering amplitudes.
Excitingly, we find preliminary one-loop evidence that the
introduction of appropriate spectral parameters allows us
to regulate all infrared divergences while staying in strictly
four dimensions, and more generally locally respecting all
symmetries.
The structure is as follows: we start from the Yang-

Baxter equation and find its solution in terms of a
spectral-parameter dependent deformation of the four-
point tree-level scattering amplitude. Then we construct
the deformed three-point building blocks of this R matrix
and relate the spectral parameter to the central charge of
particles involved in the scattering process, which in turn
leads to a physical interpretation of the deformation as a
relaxation of the helicity constraints on particles. Finally
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we present our proposal for the spectral regularization of
loop amplitudes, offer conclusions and an outlook.

Graßmannian R matrix.—As the first step in our
construction we find a spectral parameter dependent
deformation of the tree-level MHV four-point amplitude.
It is given by an R matrix which can be found from the
Yang-Baxter equation written in the tensor product of two
supertwistor spaces, labeled 1 and 2, and the fundamental
space, labeled 3

R12ðz3ÞR13ðz2ÞR23ðz1Þ ¼ R23ðz1ÞR13ðz2ÞR12ðz3Þ;
where z1, z2, and z3 ¼ z2 � z1 are spectral parameters.
The well-known R matrices acting on the tensor product
of the fundamental and supertwistor spaces are given by

RA
i3;BðzÞ ¼ z�A

B þ ð�1ÞBJAiB ;
where JAiB ¼ ZA

i
@

@ZB
i

are the generators of a twistor

representation of glð4j4Þ and ð�1ÞA encodes grading.
Then the Yang-Baxter equation is a linear equation for
the R matrix R12ðzÞ intertwining two supertwistor
representations.

Let us call RðzÞ the integral kernel of R12ðzÞ. We look
for a solution of the Yang-Baxter equation in Graßmannian
form, namely

RðzÞ ¼
I dc13dc14dc23dc24

c13c24ðc13c24 � c14c23ÞFðC; zÞ�
4j4ðCð2;4Þ �ZÞ;

where we introduced the function FðC; zÞ. This function is
uniquely determined by the Yang-Baxter equation together
with the requirement that all particles have physical
helicities. One finds

FðC; zÞ ¼
�

c13c24
c13c24 � c14c23

�
z
:

Hereafter, we will refer toRðzÞ as the four-point harmonic
R matrix. After specifying the integration over the c
variables, this is essentially the kernel of the one-loop R
matrix of the N ¼ 4 spin chain of Ref. [8]. Excitingly,
for z � 0,RðzÞ can also be interpreted as a deformation of
the n ¼ 4 and k ¼ 2 expression in (1). Similar but more
complicated deformations exist for any n and k as we will
discuss in the following.

In this Letter we focus on the superamplitudes of
N ¼ 4 SYM theory but a similar calculation can be
done for any representation of glðnjmÞ that can be written
in terms of one family of oscillators—the so-called gener-
alized one-row reps (see, e.g., Ref. [9]). The result applies
to more general integrable chains and is related to the har-
monic action of their Hamiltonians described in Ref. [10].
We defer the construction to a separate paper [11].

Three-point R matrices.—In very recent work it is dem-
onstrated that the perturbative integrand of scattering
amplitudes at arbitrary loop order naturally decomposes

into basic cubic building blocks [5]. Encouragingly, this
remains true under our deformation. In particular, one
can find deformed three-point vertices which may subse-
quently be recombined into the R matrix we found in the
previous section. As in the undeformed case [5], there are
two distinguished objects R�ðz1; z2Þ and R�ðz1; z2Þ, which
give deformations of the MHV and MHV three-point
amplitudes, respectively. They satisfy the following boot-
strap equations depicted in Fig. 1, similar to but different
from the Yang-Baxter equation of the previous section

R�ðz1; z2ÞR13ð0ÞR23ðz1Þ ¼ z1R13ð0ÞR�ðz1; z2Þ;
R23ðz1ÞR13ð0ÞR�ðz1; z2Þ ¼ z1R�ðz1; z2ÞR13ð0Þ:

(2)

An additional set of equations is obtained by replacing space
1 with space 2, leading to a second spectral parameter z2.
Once the integral kernels R�ðz1; z2Þ and R�ðz1; z2Þ are

defined one finds the following solutions to (2) in the
Graßmannian form

R�ðz1; z2Þ ¼
I dc1dc2

c1c2

1

cz11 c
z2
2

�4j4ðCð2;3Þ �ZÞ;

R�ðz1; z2Þ ¼
I dc1dc2

c1c2

1

cz11 c
z2
2

�4j4ðCð1;3Þ �ZÞ:

After integration, the three-point Rmatrices take, under the
constraint z1 þ z2 þ z3 ¼ 0, a Z3-symmetric form strik-
ingly similar to conformal field theory correlators

R�ðz1; z2Þ ¼ �4ðp� _�Þ�8ðq�AÞ
h12i1þz3h23i1þz1h31i1þz2

;

R�ðz1; z2Þ ¼ �4ðp� _�Þ�4ð~qAÞ
½12�1þz3½23�1þz1½31�1þz2

;

(3)

where we use the standard helicity spinor representations
of momentum and supercharges (see, e.g., Ref. [12]).
Again in generalization of an important insight of

Ref. [5], one has to now glue four three-point R matrices
with appropriate spectral parameters (see Fig. 2) in order to
reproduce the result for the four-point R matrix of the last

FIG. 1. Bootstrap equations for the three-point R matrices.

FIG. 2. Four-point R matrix from three-point R matrices.
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section. Exactly as in the undeformed case in Ref. [5], it is
important to stress that the R matrix depicted in Fig. 2 is
tree level as opposed to one loop.

It may be confusing that in our construction the three-
point R matrices depend on two spectral parameters as
opposed to the one parameter of the four-point R matrix.
The reason is that for the latter we additionally assumed
that all external particles have physical helicities. It is easy
to check that when one makes this further assumption,
solutions to (2) cease to exist. In order to obtain a nontrivial
result one has to relax this condition. It is then possible to
find an interpretation of the spectral parameters by acting

with the central charges Ci ¼ 1
2

P
AZA

i
@

@ZA
i

,

C1R�ðz1; z2Þ ¼ 1

2
z1R�ðz1; z2Þ;

C2R�ðz1; z2Þ ¼ 1

2
z2R�ðz1; z2Þ;

R�ðz1; z2ÞC3 ¼ 1

2
ðz1 þ z2ÞR�ðz1; z2Þ;

and analogously for R�. We see that the spectral parame-
ters have the interpretation of central charge eigenvalues of
the three particles, and that furthermore the vertices con-
serve the total central charge. Since the spectral parameter
can be any complex number it means that the particles
carry nonzero central charges, and accordingly unphysical
helicities not restricted to integers or half-integers, as the
(super-)helicity generator of the ith particle is hi ¼ 1� Ci.

There exists a simple way to produce higher-point har-
monic R matrices, by gluing only three-point R matrices.
Taking inspiration from Postnikov [13], one finds that for a
given number of particles n and given helicity k one should
take the lattice in Fig. 3 and translate it with the use of the
dictionary of Fig. 4 into trivalent ‘‘plabic’’ diagrams, which
in this case are planar diagrams with only three-point white
and black vertices. Then one identifies all black vertices
with R� and all white vertices with R�. The formula for
the tree-level harmonic R matrixRn;k is obtained by multi-

plying all three-point R matrices appearing in the plabic
diagram and integrating over internal, on-shell propagators,
which reduces to solving a set of linear equations. In
generalization of our previous analysis we also assign a

nonvanishing central charge to external particles. After a
systematic study of this gluing procedure one realizes that
the final formula for Rn;k depends on kðn� kÞ spectral

parameters which can be identified with the number of faces
in the lattice in Fig. 3. To be more specific, the spectral-

parameter dependence appears in the form
Q

if
�1þzi
i in the

integrand, where fi are the face variables of the plabic
diagram, zi are any complex numbers, and the product is
taken over all faces. In our interpretation the spectral pa-
rameters zi correspond to the ‘‘unquantized’’ helicities of
the particles circling the loops of the plabic diagrams.
Loop amplitudes and spectral regularization.—In the

following preliminary study we restrict ourselves to the
simplest case of the one-loop four-point amplitude.
Without deformation, the computation for N ¼ 4 SYM
theory results in the factorization of the tree-level ampli-
tude times the scalar box integral

A1�loop
4;2 ¼Atree

4;2

Z
d4q

ðp1þp2Þ2ðp1þp4Þ2
q2ðqþp1Þ2ðqþp1þp2Þ2ðq�p4Þ2

:

(4)

The integration over the loop momentum leads to infrared
divergences and thus requires regularization. The most
common procedure is dimensional regularization [14].
We will avoid it here.
Let us first suppress the z dependence and reproduce the

unregulated result in (4) as proposed in Ref. [5]. We choose
the following parametrization of on-shell momenta

p� _� ¼ �� ~� _� ¼ t
1

x

 !
� ð1yÞ ¼ t ty

tx txy

 !
: (5)

The one-loop four-point MHVamplitude may be obtained
from a large number of equivalent plabic diagrams [5]. We
found the diagram in Fig. 5 particularly useful for our
purposes. The procedure to obtain the box integral is clear
from the previous sections: one has to glue three-point
MHV and MHV amplitudes as in Fig. 5. Counting the

FIG. 3. Lattice encoding Rn;k.

FIG. 4. Dictionary for plabic diagrams.

FIG. 5. Plabic diagram for the one-loop four-point MHV case.
A regulating assignment of spectral parameters is added. Note
that the spectral parameters of the external and internal lines are
the difference of the numbers assigned to the faces. For instance,
the parameter associated to the line connecting particles 1 and 4
is z ¼ 4 ��� 3 �� ¼ ��, with the sign being determined by the
choice of helicity flowing upward.
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number of � functions and integrations, one easily sees that
four variables are left unintegrated. Further, these are
exactly the four integrations which reconstruct the off-shell
momentum of the loop integration [5]

Z d4q

q2
¼
Z d2�d2 ~�

GLð1Þ
d�

�
¼
Z

tdtdxdy
d�

�
;

with the off-shell momentum written in terms of p� _�,

parametrized as in (5), and reference spinors ��
1 and ~� _�

4

associated to, respectively, external particles 1 and 4

q� _� ¼ p� _� þ ���
4
~� _�
1 :

Up to a trivial numerical factor, this procedure yields the
IR-divergent one-loop four-point amplitude (4).

We now introduce spectral parameter dependence into
the above calculation, replacing the three-point amplitudes
by the three-point harmonic R matrices R�ðz1; z2Þ and
R�ðz1; z2Þ, cf. (3). A particular, suitable choice of spectral
parameters is shown in Fig. 5, resulting in the following
multiplicative regulating modification of the integrand of
the box integral in (4):

ðh34i½21�Þ�4 ��

q�2 ��ðqþ p1Þ�2 ��ðqþ p1 þ p2Þ�2 ��ðq� p4Þ�2 ��
:

It is reminiscent of analytic regularization, see Ref. [15]
and references therein. We then see that the spectral pa-
rameter can be used in our one-loop example as a regulator,
while staying in exactly four dimensions. It should be
noted, however, that this choice is not unique and other
choices can have a nonregulating effect. We suspect this
embarrassment of riches to be solved via first principles.

Conclusions and outlook.—In this Letter we propose a
new way of looking at the interplay between scattering
amplitudes and integrability. By solving the Yang-Baxter
equation as well as bootstrap equations in the Graßmannian
language, we have been able to introduce the notion of
spectral parameter into the scattering problem of N ¼ 4
SYM theory. These parameters have the mathematical
interpretation of particle central charges, and the physical
interpretation of unquantized, complex helicities. We have
presented initial evidence that the deforming parameters
may be used to replace dimensional regularization by spec-
tral regularization. Considering the IR-divergent one-loop
scalar-box integral, we have shown that a suitable z defor-
mation indeed regulates the integral. It is important to stress
that the regulator is not ad hoc, but naturally emerges from
integrability.

In conjunction with the crucial insights of Ref. [5], our
results call for a large number of exciting follow-up inves-
tigations. The most urgent issue is to establish that IR
spectral regularization works to arbitrary loop order, and
that it is consistent: For example, it needs to be established
that the regulator properly exponentiates at higher loop
order. This might significantly reduce the deformation

freedom, i.e., this might put strong constraints on the set
of spectral parameters. In Ref. [5] it is stressed that the
general N ¼ 4 loop integrand is a differential form with
structure

Q
id logfi, where fi are the face variables men-

tioned in section. Roughly speaking, this should turn
into

Q
idð1zi f

zi
i Þ under spectral regularization. If true, this

should open the way for a completely new, symmetry
respecting technical approach to loop calculations, replac-
ing dimensional regularization. More generally, we suspect
that spectral regularization might also be a natural UV
regulator, wherever needed (Wilson loops, correlation
functions, form factors, etc.). However, the most exciting
perspective is to get a handle on all-loop, i.e., (planar)
nonperturbative calculations by applying the powerful tech-
niques of the two-dimensional quantum inverse scattering
method to our four-dimensional system. Recall that in the
N ¼ 4 spectral problem the one-loop spectral parameter is
‘‘split’’ into two parameters x� by the coupling constant
[16]. Can we further deform our R matrices to include the
coupling in a nonperturbative fashion? Finally, we find it
exciting to investigate whether locally ‘‘unquantizing’’ the
helicities of massless particles could lead to new ways to
regulate IR and UV infinities in more general, nonintegrable
quantum field theories.
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