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To unify general relativity and quantum theory is hard in part because they are formulated in two very

different mathematical languages, differential geometry and functional analysis. A natural candidate for

bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral

geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential

operators. As an immediate benefit, this would offer a clean gauge-independent identification of the

metric’s degrees of freedom in terms of invariants that should be ready to quantize. However, spectral

geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral

geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate

that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional

objects from their vibrational spectra.
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The much sought-after unifying theory of quantum grav-
ity, see, e.g., Ref. [1], should also unify or at least very
closely link the mathematical languages of quantum theory
and gravity, namely, functional analysis and differential
geometry. A natural candidate for this mathematical link
is the discipline of spectral geometry. Spectral geometry
asks, for example, if or to what extent the shape of a thin
object such as a vase can be described through its vibra-
tional spectrum. For quantum gravity, the more general
spectral geometric question is if or to what extent the
curvature of compact n-dimensional Riemannian mani-
folds without boundaries (which henceforth we will simply
call ‘‘manifolds’’) can be described in terms of the spectra
of canonical differential operators on the manifold, such
as the Laplace or Dirac operators. (Compactness, here,
merely serves as an infrared cutoff that ensures that the
spectra are discrete). Note that it is a different branch of
spectral geometry that was popularized by M. Kac’s paper,
‘‘Can one hear the shape of a drum?’’ [2]. It asked to
what extent the boundary of a flat membrane is determined
by its spectrum; see, e.g., Refs. [3–5].

If, indeed, at least the Euclidean spacetime curvature can
be described in terms of the spectra of canonical operators,
such as the Laplace or Dirac operators, this could be very
useful for quantum gravity. This is because these spectra
are invariants; i.e., they depend only on the Riemannian
structure itself but not on gauge choices such as charts or
frames. Therefore, the degrees of freedom of gravity would
be cleanly identified as the relevant set of eigenvalues.
Their dynamics and quantization would be free of diffi-
culties stemming from diffeomorphism invariance; see,
e.g., Ref. [6]. Even if the spectra uniquely determine the

curvature only in a finite neighborhood of each manifold
this could be very useful for the perturbative quantization
of gravity.
Concretely, spectral geometry studies maps, S, which

map a set of curved manifolds into one or several spectra of
canonical differential operators on the manifolds. Since
any such S is highly nonlinear, the study of the invertability
of S is hard. In order to make the calculations feasible,
previous work has therefore generally involved stringent
assumptions, usually assumptions of high symmetry of the
manifolds in question. There have been intriguing results
of spectra determining the curvature, as well as examples
of isospectral nonisometric manifolds. For a review see,
e.g., Ref. [7]. Little is known, however, about the case that
would be of most interest in physics, namely, the generic
case of manifolds without symmetries.
In Refs. [8,9], it was proposed to make this nonlinear

problem tractable by breaking it up into an iteration of
linearized problems. To this end, the idea is to consider the
derivative DS of S. It maps small changes of the metric to
the corresponding small changes of the spectra, a problem
which is solvable by perturbation theory. If DS is indeed
invertible, one can then iterate small steps of curvature
reconstruction to obtain for any given spectra the corre-
sponding curved manifold(s). The existence of nonisomet-
ric but isospectral manifolds would then manifest itself in a
path dependence of the manifold so obtained.
Regarding the question of the existence of isospectral

nonisometric manifolds, we remark that, crucially,DS acts
on changes to the metric that have generally to be assumed
to come in scalar, vector, and tensor types (as do, e.g.,
cosmological perturbations). This means that the spectra of
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the Laplacians on scalars, vectors, and tensors will need to
be considered so that DS can possibly be invertible. This
fact had been overlooked before the paper [9], and it
explains why the Laplacian on scalars was often found to
be insufficient to capture the metric.

Here, we will now address the key question concerning
whether DS is indeed invertible in the generic case and if,
therefore, the spectra uniquely determine the curvature in a
finite neighborhood of each manifold. We begin with the
intuition that DS can only be invertible if the number of
degrees of freedom in perturbations of the metric at most
matches the number of degrees of freedom in the spectra,
except that both numbers are infinite, of course. To make
the problem tractable, we propose to regularize the mani-
folds in question by approximating them through suitable
geometric graphs embedded in a higher-dimensional mani-
fold. This yields an S that maps from a finite-dimensional
space of geometric graphs into the finite-dimensional space
of spectra of Laplacians defined over the graphs. The basic
problem, therefore, reduces to determining when the finite-
dimensional matrix DS is invertible, while ensuring that
the spectrum of the continuum Laplacian(s) is recovered in
the continuum limit.

While this program for constructing DS�1 is relatively
straightforward in principle, it is technically quite involved.
This is because there are scalar, vector, and tensor degrees
of freedom in the perturbations of the metric. This means
that our program generally involves Laplacians that act
on the analogs of scalar, vector, and tensor fields over
geometric graphs that approximate manifolds. The theory
of such Laplacians has not yet been fully developed;
see, e.g., Ref. [10].

However, we can immediately carry out our program
on two-dimensional manifolds. Their metric possesses
only scalar degrees of freedom and, therefore, also the
metric perturbations of two-dimensional manifolds can
be described by scalar functions. Also, all scalar functions
can be expanded in the eigenbasis of the Laplacian on
scalar functions. Therefore, crucially, there is exactly one
shape degree of freedom for each eigenvector of the
Laplacian. This is as many as there are eigenvalues, count-
ing degeneracies. Notice that, for higher-dimensional
manifolds, by the same argument, the number of shape
degrees of freedom again cannot exceed the number of
eigenvalues. We will now show thatDS is indeed generally
invertible and also that the infinitesimal steps can be iter-
ated. This then allows us to calculate shape from sound.

Construction of the geometric graphs.—Our aim is to
explicitly implement the above strategy for two-
dimensional manifolds. The first step is to regularize the
problem to finite dimensions by approximating the mani-
folds by surfaces of polyhedra. To this end, assume that
from the origin of R3 a large number, N, of half lines
emanate in uniformly randomly chosen directions. Now
let us assume further that N positive numbers frigNi¼1 have

been chosen. For each i ¼ 1 . . .N we mark on the ith half
line the point pi, which is at the radial distance ri
from the origin. In this way, we obtain N points pi in R3.
Here, pi ¼ riei, and ei are normalized direction vectors.
Further we assume a triangulation of the set of points
fpig, so that we obtain the surface of a polyhedron. Any
star-shaped Riemannian manifold can be approximated
to arbitrary precision by choosing N sufficiently large.
Generalizations of this construction for non-star-shaped
manifolds should be possible in a similar manner.
We will work with arbitrarily high but finite precision.

To this end, let us fix a large N, a set of random directions
of the N half lines and a triangulation. We then allow
only the N values frig to vary. In this way, we obtain an
N-parameter family of polyhedra that approximate star-
shaped manifolds. The key question then becomes whether
one can tell the shape of these polyhedral surfaces from
their vibrational spectrum.
In order to answer this question, we first note that the

number of real degrees of freedom that describe the shape
of a polyhedron in the family is the number of radii, ri, of
which there are N. We need to compare this number with

the number, N0, of eigenvalues f�jgN0
j¼1 of the Laplacian of

the surface of the polyhedron. While there are several
definitions for Laplace operators on graphs, they all pos-
sess the same number, N0, of eigenvalues, namely N0 ¼ N.
To see this, note that functions on the manifold are

replaced on the graph by functions on the N nodes
fpigNi¼1; see, e.g., Ref. [11]. The function space F is there-

fore an N-dimensional Hilbert space. The Laplace opera-
tor, L, on functions over the graph acts onF , which means
that it is a self-adjoint N � N matrix. The spectral theorem
then implies that L possesses N0 ¼ N real eigenvalues.
The geometric graph Laplacian.—In order to study in

detail the information contained in the spectrum, we need
to choose an explicit graph Laplacian. The choice is not
unique, much like there is no unique discretization of a first
derivative. General requirements are that it must be self-
adjoint and semi-positive definite [12]. Here, for the trian-
gular surface meshes with which we work, we also need
locality, linear precision, and positivity of the weights [13].
Choices of discrete geometric Laplacians are discussed in
Ref. [14]. We will use the standard discrete geometric
Laplacian for triangulations introduced by Desbrun et al.
[15]. It obeys these conditions and is also widely used in
computer graphics.
To define it, recall that a graph, G, of a polyhedron

consists of a set V of nodes or vertices, vi, given by the
points pi 2 R3, and a set of weighted edges E. By dv we
denote the degree of the vertex v, i.e., the number of edges
emanating from it. The weight matrix W has as matrix
elements the weights wij that are associated with the edge

that joins the vertices i and j,

wij ¼
cotð�ijÞ þ cotð�ijÞ

2
: (1)
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Here, �ij and �ij denote the two angles opposite the edge

(i, j). The Laplacian is then defined through L ¼ V �W,
where V ¼ diagðv1; v2; . . . ; vnÞ, with vi ¼

P
jwij.

Crucially, this graph Laplacian is also known to be
geometric in the sense that it converges to the ordinary
Laplacian in the continuum limit. Concretely, the results of
Ref. [16] show that if a set of so-called normal polyhedra
converges in distance and in area, then the geometric graph
Laplacian converges to the Laplacian on the manifold with
respect to the operator norm topology. The theorem applies
because for sufficiently large N, our star-shaped polyhedra
will be normal graphs in the sense of Ref. [16], meaning
that every point on the polyhedra has a unique closest
point on M, whose distance is smaller than a fixed upper
bound (the so-called reach of M). This means that given a
star-shaped compact Riemannian manifoldM, our polyhe-
dral approximations possess spectra that converge to the
spectrum of the Laplacian on the manifold for N ! 1.

Now, as is easy to verify, zero is always an eigenvalue of
this graph Laplacian, with the constant vector being the
eigenfunction (as on the manifolds). Thus, only the eigen-
values f�igNi¼2 can carry shape information (although if we

allowed nontrivial topologies of the polyhedra, the degen-
eracy of the eigenvalue 0, being the 0th Betti number,
would carry connectivity information). Also, the graph
Laplacian is conformally invariant since it depends only
on the angles between edges but not on their lengths, like
the conformal Laplacian on the manifold. Therefore, with-
out restricting generality, only the radii frigNi¼2 carry shape

information, while r1 fixes the overall size. The numbers of
degrees of freedom of shape and sound appear, therefore,
matched at N � 1.

Infinitesimal inverse spectral geometry of graphs.—In
order to determine if small changes of sound indeed
determine the corresponding small changes of shape, let
us consider the nonlinear map S:RN�1 ! RN�1, namely
S: ðr2; . . . ; rNÞ ! ð�2; . . . ; �NÞ. Its derivative, DS, with
entries @�i=@rj is a ðN � 1Þ � ðN � 1Þ matrix. detðDSÞ
is a generic function and should therefore be nonzero
almost everywhere (in the sense of on a set of measure
zero), so that ðDSÞ�1 should exist. Almost all small
changes of a polyhedron’s spectrum should uniquely deter-
mine a corresponding change of shape.

Concretely, since the graph Laplacian is conformally
invariant, we fix one point on the graph, r1. As discussed,
this fixes the overall size of the polyhedron and leaves
us with only N � 1 radii frigNi¼2 to determine from the

spectrum, which has N � 1 variable eigenvalues f�igNi¼2.
Now suppose the shape is changed by slightly changing the
radii frigNi¼2:

ri ! ri þ �ai; i ¼ 2; . . . ; N; (2)

where � � 1 and all ai 2 R. Then,

L ! Lþ ��ðaÞ; with a ¼ ða2; . . . ; aNÞ: (3)

We find that � ¼ �V-�W, where �vi ¼
P

j�wij, with

�wij ¼ ��̂ij cot�ij þ ��̂ij cot�ij: (4)

The indices �̂ and �̂ denote the number of that vertex
opposite the edge (i, j), which has the angle �ij or �ij,

respectively. Here, �kij ¼ ðlik fik þ ljk fjkÞ=ðlik ljkÞ with

lij ¼ riei � rjej and fij ¼ aiei � ajej. The change in the

spectrum of L can now be calculated by first-order pertur-

bation theory. With kðiÞ denoting the ith eigenvector of L,

�i ! �i þ �
XN

j1;j2¼1

kðiÞj1 �j1;j2ðaÞkðiÞj2 ; (5)

i.e., the linear map DS reads

ðDSÞi;j ¼ @�i=@rj ¼ hkðiÞj�ðaðjÞÞjkðiÞi; (6)

where ðaðjÞÞk ¼ �j;k is the perturbation vector in the j

direction. For any shape, i.e., for any point r ¼
ðr2; . . . ; rNÞ in the (N � 1)-dimensional space of radii, R,
this yields DSðrÞ. Its determinant, det½DSðrÞ� is a real-
valued function over R. If there is no further loss
of degrees of freedom (such as that the zero eigenvalue
never moves), the single equation det½DSðrÞ� ¼ 0 should
describe a submanifold Z � R, which is at most (N � 2)-
dimensional. This then means that DSðrÞ is invertible
almost everywhere, namely on R-Z. Notice that spectra
may uniquely determine shapes even onZ, similarly to how
g: x ! x3 is invertible for all x, including x ¼ 0, in spite of
g0ð0Þ ¼ 0.
To test that there is no further loss of degrees of freedom

(other than the conformal invariance and the constancy of
the zero eigenvalue that we took care of), we should
evaluate the determinant for all r 2 R. The explicit
form of det½DSðrÞ� is unwieldy due to its dependence on
eigenvectors. It is straightforward, however, to evaluate
det½DSðrÞ� numerically for any r 2 R. The results
indicate that the determinant is indeed nonzero almost
everywhere. This implies, by the inverse function theorem,
that at least for almost all the polyhedra there is a finite
neighborhood within which any change of shape is recov-
erable from its change of spectrum.
From infinitesimal to finite inverse spectral geometry.—

The fact that DSðrÞ is invertible almost everywhere in the
space of shapes, R, suggests tackling finite inverse
spectral geometry by iterating the infinitesimal steps. For
example, a simple strategy for finding a target polyhedron
when given only its spectrum is to start with an arbitrary
ansatz polyhedron. Then, one slightly perturbs its spectrum
towards the target spectrum, while calculating the corre-
sponding change of shape. The procedure is iterated on a
straight line path in the space of spectra, all the while
calculating the change of shape until the target spectrum
is reached. This works as long as det½DSðrÞ� � 0 on this
path, i.e., until Z needs to be crossed. In this case, one
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strategy is to temporarily reduce the number of radii
and eigenvalues that one varies. The resulting lower-
dimensional submatrix of DSðrÞ can be chosen to have
nonzero determinant and is therefore invertible. Once Z
is crossed, one can return to the straight path to the target
in the space of spectra.

Another strategy can be devised that is fundamentally
more robust when Z needs to be crossed: we start again
with an arbitrary ansatz graph, given by a set of radii
frigNi¼2. For this algorithm, we use a distance function, �,
that measures the distance between this graph’s spectrum
and the spectrum of the target graph. We perturb the graph,
i.e., its radii, in the direction of the gradient @�@ri

. By iteration

we obtain in the space of shapes, R, the steepest path to
the target spectrum and shape, with respect to the chosen
notion of distance.

This algorithm does not automatically halt when
crossing Z. To see this, for any graph, specified by radii
r ¼ frig, we define its spectral distance � to the target
graph through

�ðrÞ :¼ XN

i¼2

½fð�iðrÞÞ� fð�target
i Þ�2; (7)

where f is some arbitrary but fixed strictly monotonic
function. More general � are possible, of course, but this
level of generality suffices.

The only possibility for this algorithm to halt is when the
gradient vanishes, i.e., when @�=@ri ¼ 0 for i ¼ 2; . . . ; N.
This happens when the global minimum of �ðrÞ is reached
at the target r ¼ rtarget or at an isospectral graph if one
exists. It can also happen at other critical points of �ðrÞ,
where for all j ¼ 2; . . . ; N,

0 ¼ @�

@rj
¼ XN

i¼2

2½fð�iðrÞÞ� fð�target
i Þ� @fð�iðrÞÞ

@�i

@�iðrÞ
@rj

¼ XN

i¼2

vi

@�iðrÞ
@rj

¼ XN

i¼2

viðDSÞi;j: (8)

Here, vi ¼ 2½fð�iðrÞÞ� fð�target
i Þ� @fð�iÞ

@�i
. Therefore, the

algorithm can halt prematurely at a r 2 Z, but only if
vðrÞ also happens to be in the kernel of ðDSÞT . In this
case, the algorithm can be unstuck by changing the defi-
nition of f, because this changes vðrÞ. Intuitively, the
algorithm flows down the landscape �ðrÞ over R along
the gradient. It halts if it runs into a local minimum of�ðrÞ.
By changing f, one can change the landscape so that the
minimum and its catchment area are removed from r.
Alternatively, one can keep f fixed and randomly move r
sufficiently to escape the minimum’s attractor.

Numerical results.—We implemented the gradient-
based algorithm, choosing the half lines’ directions ran-
domly or regularly. We choose f: x ! 1=x, so that the
algorithm tends to first converge the smaller eigenvalues,
which determine the large-scale shape, and then fixes the

small-scale structure. Technically, for large N, there exist
polyhedra that are near translates and rotates of the target
polyhedron and that therefore would be near isospectral,
slowing down convergence. This is easily fixed by fixing
several radii instead of just one.
We have found that the algorithm allows one to recover

graphs from their spectra all the way down to machine
precision, see, e.g., Fig. 1. In fact, in the generic case, i.e.,
when choosing N random directions for the half lines, we
have not found any isospectral nonidentical graphs.
Otherwise, when the half lines are chosen symmetrically,
we do of course have that at least each graph and its mirror
image possess the same spectrum.
Conclusions and outlook.—Methods that enable one

to fully describe manifolds in terms of the spectra of
their canonic operators should have great potential for
quantum gravity. This is because these eigenvalues, being
diffeomorphism-independent invariants of the manifold,
can then be identified as the pure, gauge-independent
degrees of freedom of gravity. If applied to spacelike
hypersurfaces, their dynamics may be quantized along
the lines outlined for the Dirac operator in Ref. [6].
Applied to four-dimensional manifolds, Euclidean quan-
tum gravity can then be pursued by studying the thermo-
dynamics of these spectra. In fact, the Euclidean Einstein
action in four dimensions is known to be expressible, very
simply, in terms of the eigenvalues of the Laplacian, [9,17].
In Ref. [9] it was proposed, therefore, to break up the

nonlinear problem of spectral geometry into the iteration of
infinitesimal linear steps. Here, we have made this idea
workable, at least for two-dimensional star-shaped mani-
folds, by introducing a program of graph regularization.
This showed analytically that small changes of spectrum
generically do determine the small changes of shape. The
numerics even indicates that, in the absence of symmetry,
the spectrum determines the shape globally.
In order to extend our results to four (Euclidean) dimen-

sions, it will be necessary to further develop the theory of
Laplacians on tensors on geometric graph approximations
of higher-dimensional manifolds. But it may also be pos-
sible to pursue a similar program with ultraviolet regulari-
zations other than graph regularizations, so as to preserve
the smooth manifold structure throughout.
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FIG. 1 (color online). Snapshots of the algorithm starting with
a sphere and finding the cube from its spectrum alone.
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