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We introduce an approach to quantum information processing where the information is stored in the

motional degrees of freedom of nanomechanical devices. The qubits of our approach are formed by the

two lowest energy levels of mechanical resonators, which are tuned to be strongly anharmonic by suitable

electrostatic fields. Single qubit rotations are conducted by radio-frequency voltage pulses that are applied

to individual resonators. Two-qubit entangling gates in turn are implemented via a coupling of two qubits

to a common optical resonance of a high finesse cavity. We find that gate fidelities exceeding 99% can be

achieved for realistic experimental parameters.
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Mechanical oscillators are among the most elementary
structures that are studied in physics. Nonetheless, they
have properties that make them very useful for technologi-
cal applications. Their vibrational modes can, for example,
undergo millions of oscillations before the motion is even-
tually damped and they can couple to electromagnetic fields
in a very broad frequency range via their polarizability.
Whereas the latter property has prompted significant
effort to build optical to microwave frequency converters
[1,2], the enormous Q factors of mechanical oscillators
have been exploited to demonstrate approaches tomechani-
cal computers in the classical domain [3,4]. The fascinating
properties of nanomechanical oscillators furthermore moti-
vated intense research activity towards exploring their
quantum regime, which has very recently lead to break-
throughs in cooling such oscillators to their quantum
ground states [5–7].

Here, we introduce an approach to quantum information
processing with mechanical degrees of freedom by making
use of the aforementioned exquisite properties of nano-
mechanical oscillators. The device we envision consists of
an array of doubly clamped nanobeams that all couple to a
common resonance mode of a high finesse optical cavity;
see Fig. 1 for an illustration and possible setup. Each
nanobeam can furthermore be manipulated individually
with electrostatic and radio-frequency fields that are
applied via small tip electrodes. A suitable setup for an
implementation is, for example, carbon nanotubes that
couple to the evanescent field of a whispering gallery
mode cavity [8–14]; cf. Fig. 1.

In our scheme, the constant electric fields applied to
individual nanobeams make the mechanical spectrum of
each beam anharmonic and allow us to tune the respective
transition frequencies. For large enough fields, the anhar-
monicity of the mechanical spectrum becomes comparable
to the linewidth of the optical cavity resonances. By driv-
ing the cavity with a coherent input that is appropriately
detuned in frequency from the closest cavity resonance,
one can ensure that only one transition between eigenstates

of the mechanical motion couples to the cavity. Here, we
choose the laser drives such that the cavity couples to the
transition between the ground and first excited state of the
nanobeam. These two states, denoted j0i and j1i, form our
nanomechanical qubit.
As compared to previous approaches [15,16], our

scheme uses the intrinsic nonlinearity of nanomechanical
resonators that allows us to selectively address the qubit
transitions and results in very high gate fidelities. Local
operations, i.e., single qubit gates are implemented by
applying suitable voltage pulses via the tip electrodes.
The optical cavity mode in turn mediates interactions
between any pair of mechanical qubits. If such an interac-
tion is active for a suitable time range and combined with
pertinent local operations, it can implement a fundamental
entangling gate, e.g., the so-called ISWAP gate [17]. For
many qubits, one can selectively apply such an ISWAP gate
to any desired pair of qubits by tuning them to a transition
frequency !G while the remaining qubits are tuned to a
markedly different transition frequency !S via suitable
voltages at the respective tip electrodes. As we show in
detail below, at the end of the ISWAP gate on the selected
qubits all remaining qubits can be made to return to their
initial state and effectively undergo an identity operation.
After successfully completing a quantum algorithm, the
state of each qubit can be read out by tuning individual
qubits to distinct transition frequencies and performing
spectroscopy with a weak probe laser; cf. Refs. [13,14].
With all the above ingredients, the device we envision

satisfies the requirements for implementing quantum com-
puting [18]. (1) It has well-defined qubits formed by the
two lowest energy eigenlevels of strongly anharmonic
nanomechanical oscillators and is scalable since multiple
nanobeams can couple to one high finesse optical mode.
(2) It is initializable in the state j0; 0; . . . ; 0i by cooling the
mechanical motion to the ground states, e.g., via side-band
cooling [6,7]. (3) The extremely high Q factors of nano-
mechanical oscillators together with a cryogenic environ-
ment ensure that the coherence times of the qubits greatly
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exceed gate operation times. (4) A universal set of gates
can be implemented. (5) Spectroscopy on individual qubits
together with single qubit rotations allows for high quan-
tum efficiency, qubit-specific readout.

The system.—We consider a system consisting of N
nanobeams that are clamped at both ends and thus feature
an intrinsic nonlinearity that originates in the stretching of
the material associated with its deflection [19,20]. In terms

of phonon creation (annihilation) operators byj (bj), the

Hamiltonian of one nanobeam reads

Hð0Þ
m;j ¼ @!mb

y
j bj þ @

�

2
ðbyj þ bjÞ4; (1)

where !m is the resonance frequency of the harmonic

motion and � ¼ �
4@ x

4
ZPM is the nonlinear contribution.

Here, � depends exclusively on the dimensions and
material properties of the beam whereas xZPM denotes the
amplitude of its zero point motion. All nanobeams are
subject to static and radio-frequency electric potentials
generated by tip electrodes in the close vicinity of each
beam [13,14,21,22] and couple to a common optical mode
of a high finesse cavity. The Hamiltonian of the entire
electro-optomechanical setup in a frame that rotates at
the frequency of the drive laser reads

H ¼ �@�ayaþX

j

@gj

�j�jffiffiffi
2

p þ Xc

�
Xj þ

X

j

Hð0Þ
m;j

þX

j

½Vxy
j ðtÞXj þ Vz

j ðtÞX2
j �; (2)

where � is the detuning between driving laser and cavity

resonance and Xj ¼ ðbj þ byj Þ=
ffiffiffi
2

p
is the deflection of

beam j. The photon operators a and ay have been shifted
by their steady-state values a ! �þ a, and a negligible

term / aya
P

jXj has been dropped. Hence, Xc ¼ ð��aþ
�ayÞ= ffiffiffi

2
p j�j is a photon quadrature with � ¼ �=ð2�þ

i�Þ, where� is the drive amplitude of the laser and � is the
photon decay rate of the cavity.
The potentials Vxy;z

j ðtÞ ¼ Vxy;z
j;0 þ Vxy;z

j;1 ðtÞ describe con-

stant Vxy;z
j;0 and time-dependent Vxy;z

j;1 ðtÞ gradient forces

caused by the voltages applied to the tip electrodes. The
constant parts tune the equilibrium positions of the mecha-
nical oscillators viaVxy

j;0 and their spectrum viaVz
j;0, whereas

the time-dependent parts Vxy
j;1ðtÞ can implement single qubit

rotations. We always choose Vxy
j;0 ¼ �@gj

j�jffiffi
2

p such that the

nanobeams remain undeflected. gj ¼ 2j�jxZPM;jG0 is the

optomechanical coupling that can be controlled by the am-
plitude of the laser drive, whereG0 ¼ @!=@X is the cavity’s
frequency shift per resonator deflection. We use the radio-
frequency fields Vj;1ðtÞ and the couplings gj as controls to

perform gate operations.
In a realistic experimental situation, the mechanical

motion will be subject to damping at a rate �m and cavity
photons will be lost at a rate �. The full dynamics of our
system that takes these incoherent processes into account
can thus be described by the master equation

_% ¼ �i½H;%� þ �m

2

X

j

½ �nD";jðbjÞ þ ð �nþ 1ÞD#;jðbjÞ�

þ �

2
D#;cðaÞ; (3)

where �n is the thermal phonon number at the environment
temperature T and the dissipators read D#ðyÞ ¼ 2y%yy �
yyy%� %yyy and D"ðyÞ ¼ 2yy%y� yyy%� %yyy.
Nanomechanical qubits.—The qubits we consider are

formed by the two lowest energy levels of our nanomechan-
ical beams. Mechanical resonators feature a small intrinsic
anharmonicity in any deflection mode that can be enhanced
by electrostatic gradient forces; see Refs. [13,14] for
details. Suitably tuned electrostatic fields generate an
inverted harmonic potential of the form V / �X2 that
counteracts the harmonic part of the elastic restoring force.
The electrostatic potential thus softens the mechanical
resonance mode and hence reduces its frequency. Since

the deflection per phonon xZPM is proportional to !�1=2
m , a

reduction of !m causes a significant enhancement of the
nonlinearity as � / x4ZPM / !�2

m ; cf. Refs. [13,14].
It is useful to consider a ‘‘tuned’’ mechanical Hamiltonian

Hm;j ¼ Hð0Þ
m;j þ

P
jV

z
j;0X

2
j that includes the constant parts

of the Vz
j . We write Hm;j and the deflection Xj of

each mechanical resonator in the eigenbasis of Hm;j; i.e.,

Hm;j ¼ P
nEn;jjnijhnjj and Xj ¼ P

nmXnm;jjnijhmjj, where

(a) (b)

(d)(c)

FIG. 1 (color online). Top row: Illustration of nanomechanical
qubits interacting via a common photon mode: (a) The deflection
of one resonator locally changes the energy density of the photon
field and thus causes a force onto other resonators. (b) By properly
tuning the qubit frequencies, noninteracting subsets can be
defined. Bottom row: Possible implementation of the device we
envision. (c) The mechanical vibration of doubly clamped carbon
nanotubes couples optomechanically to the evanescent field
of a whispering gallery mode in a high finesse microtoroid.
(d) Electrostatic and radio-frequency fields can be applied to
each nanotube (black) individually via tip electrodes (blue).
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Hm;jjnij ¼ En;jjnij. The En;j and Xnm;j can be found

numerically; see Fig. 2(a).
Provided the nonlinearity per phonon is large enough

and the mechanical motion is cooled to the ground state,
we can restrict our analysis to the two lowest energy levels
j0ij and j1ij of each resonator, which form our qubits. The

nonlinearity of the qubits, i.e., the fact that the qubit trans-
ition energies @�10;j ¼ E1;j � E0;j differ significantly from

transition energies between higher states @�nm;j ¼ En;j �
Em;j, especially from @�21;j [see Fig. 2(b)], ensures that the

restriction to these two levels remains a very accurate
approximation throughout the gate sequences. To explain
the gate operations in detail we now switch to an interac-
tion picture with respect to H0 ¼ �@�ayaþP

jHm;j.

Local operations and single qubit gates.—Local opera-
tions, that is, rotations about the �x, �y, and �z axes, are

realized by applying time-dependent gradient forces as
encoded in the potentials Vxy

j ðtÞ and Vz
j ðtÞ in Eq. (2).

We obtain �z rotations by temporarily shifting the qubit
transition frequency �10, which makes the qubit rotate
at a different rate and hence collect a phase shift. This is
achieved by tuning the softening fields that control the
mechanical frequency to a different value for a suitable
time which adds a term VzX2 to the Hamiltonian that shifts

the qubit frequency �10 ! �10 þ �ð1Þ
10 ðtÞ (we skip the qubit

index j throughout the discussion of local operations). ForR
�ð1Þ
10dt ¼ �=2, this procedure implements the operation

e�i
R

VzðtÞX2dt=@ � e�i�z�=2 � �½���z : (4)

The �x and �y rotations can be implemented by

applying gradient forces related to Vxy. If the potential
VxyðtÞ is a pulse that is modulated by an oscillation at
the qubit frequency VxyðtÞ ¼ cosð�10tþ 	Þ ~Vxy, one finds
~Vxycosð�10tþ	ÞeiH0t=@Xe�iH0t=@� ~Vxy � X01

2 ½cosð	Þð�01þ
�10Þ þ i sinð	Þð�01 � �10Þ�, where �ab ¼ jaihbj and we
have dropped off-resonant contributions. Thus, for 	 ¼ 0
and

R
dt ~VxyðtÞ ¼ �=X01, one finds

e�i
R

dtVxyðtÞX � e�i�x�=2 � �½�� �x ; (5)

and for 	 ¼ 
=2 and
R
dt ~VxyðtÞ ¼ �=X01

e�i
R

dtVxyðtÞX � e�i�y�=2 � �½�� �y : (6)

Effective interactions and two-qubit gates.—In order to
implement entangling two-qubit operations, we employ
an indirect interaction between mechanical resonators
that is mediated by an optical cavity mode [23]. Here,
the laser is sufficiently far detuned from any resonance,
such that gj � j�� �nm;jj. For an initial state in the qubit
subspace formed by j0ij and j1ij, this condition ensures

that the dynamics is restricted to this subspace. To perform
a gate operation on two qubits, e.g., with indices j ¼ f1; 2g
(‘‘gate qubits’’), we tune those two qubits to a common
transition frequency !G and hence common coupling gG,
while tuning the remaining qubits (‘‘saved qubits’’) to
a sufficiently different transition frequency !S and cou-
pling gS such that j!G �!Sj 	 gG; gS and interactions
between gate qubits and saved qubits are strongly
suppressed. To explain the working principle of this gate,
we consider a scenario where Vxy;z

j;1 ¼ 0. An adiabatic

elimination of the photons together with a rotating wave
approximation yields the effective Hamiltonian

Heff � HG þHS;

HG ¼ @
g2G�X

2
G

�2 �!2
G

ð�01
1 �10

2 þ H:c:Þ þ X2

j¼1

HG;j;

HS ¼ @
g2S�X

2
S

�2 �!2
S

X

i�j>2

ð�01
i �10

j þ H:c:Þ þ X

j>2

HS;j; (7)

where HG=S;j¼@
g2j
2 ðc0G=S�00

j þc1G=S�
11
j Þ and �ab

j ¼ jaihbjj.
Here, XG=S denotes the displacement matrix element X01;j

and cnG=S¼
P

mðX2
nm;jÞ=ð�þ�nm;jÞ are the interaction-

induced energy shifts for the gate qubits (j ¼ 1, 2) and saved
qubits (j > 2), respectively; see SupplementalMaterial [24].
The corresponding phase shifts can be reversed after the gate
operation by appending a suitable �z rotation.
The time evolution of the Hamiltonian (7) can be used to

perform an ISWAP operation on distinct gate qubits, while
the other qubits are unaffected. This can be achieved by

decomposing the ISWAP operation into
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ISWAP

p
opera-

tions, using the identity

Here, the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ISWAP

p
operations are implemented by choos-

ing laser drive pulses such that ð�X2
GÞ=ð�2 �!2

GÞ�R
gGðtÞ2dt ¼ � 


4 , respectively. The
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ISWAP

p
and theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ISWAP

p
operations thus only differ by the sign of the

employed detuning �. During the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ISWAP

p
operation on

the gate qubits, the saved qubits are subject to the dynamics

(a) (b)

FIG. 2 (color online). (a) Nonlinear phonon spectrum of a
nanobeam in the presence of a softening field Vz

0. For 2V
z
0 >

@!m;0, the beam enters the bistable buckling regime.

(b) Effective nonlinearity of the phonon spectrum �21 � �10.
A sufficiently high value of �21 � �10 suppresses unwanted
processes of the type j11 . . .i ! j20 . . .i.
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generated by HS [compare to Fig. 1(b)]. Yet since there
are no local �½
��z operations on the saved qubits, this
evolution is reversed during the subsequent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ISWAP
p

operation on the gate qubits and the saved qubits return
back to their initial states.

Numerical results.—We analyzed the fidelities of the
quantum gates we propose by numerically solving
Eq. (3) involving two and four qubits, where we included
the lowest three levels j0i, j1i, j2i for each resonator
(qubit). To find an estimate for the fidelity of the gate

operations, we compute the fidelity fð�; �Þ ¼
Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
p

�
ffiffiffiffi
�

pp Þ of the desired target state � with the actual

state � that results from the full dynamical evolution for
several initial states. In order to confirm that relative phases
of the states evolve as desired, we use all states of the

form j�i ¼ ðjj; k; . . .i þ j0; 0; . . .iÞ= ffiffiffi
2

p
(j; k; . . . ¼ 0; 1) as

initial states and average the fidelity f over these,

F ¼ fð�;�Þjall j�i. Figure 3 shows the resulting gate error

E ¼ 1� F as a function of the gate time TG, the laser
detuning �, and the mechanical and optical dissipation
rates �m and �. To demonstrate the scalability of our
approach, we present results for two qubits (solid lines)
as well as for four qubits (red dots). For the four-qubit case,
the gate is applied to two qubits while the remaining two
return to their initial state. These results clearly show the
excellent scaling properties of our approach.

The results given in Fig. 3 are found for (10,0)-carbon
nanotubes of length L ¼ 300 nm and radius R ¼ 0:39 nm,
coupled to the evanescent field of a microtoroid cavity;

see Refs. [13,14] for details. By softening the mechanical
resonance frequency of the gate qubits down to !G=2
 ¼
26:6 MHz, we achieve a nonlinearity of ð�21 � �10Þ=2
 ¼
2:71 MHz. The optomechanical coupling of carbon
nanotubes can be dramatically enhanced by employing a
cavity resonance in the vicinity of recently demonstrated
excitonic resonances [24–26]. We choose a cavity frequ-
ency that is far enough from such a resonance to suffi-
ciently suppress additional absorption and estimate that an
optomechanical coupling rate of gG=2
 ¼ 8:73 MHz can
be achieved with a laser drive of 5.30 W input power that
is detuned by �=2
 ¼ 0:399 GHz from the cavity freq-
uency. For a gate time of TG ¼ 1:49 �s, such coupling
suffices for the

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ISWAP

p
operation assuming a rectangular

pulse. Furthermore, we assume an ambient temperature of
20 mK, a mechanical Q factor of 5� 106 for the tuned
resonator [10], and a total photon decay rate (including
intrinsic cavity losses and losses induced by the exciton
resonance) of �=2
 ¼ 133 kHz [27,28]. Note that for our
conditions with �2=�2 ¼ 8� 10�8 this corresponds to an
absorbed power of 
18 nW that is comfortably compat-
ible with a cryogenic environment [29]. Moreover, even
higher finesses and lower absorption could be attained in
crystalline resonators [30]. For tuning the mechanical
resonances, electrostatic fields of 76 V=�m are required,
whereas for the local operations �x;y½��, we find radio-

frequency field amplitudes of 
1 V=�m, depending on
operation time and angle �. For the static fields that
compensate the photon-induced shift of the equilibrium
position during an entangling operation, 6:1 V=�m is
needed and the �z½�� operations require a gate time
>�=!G to avoid buckling the resonator. Importantly,
decoherence due to electric noise in the electrodes, such
as Johnson-Nyquist or 1=f noise, is in our setup negligible
compared to the mechanical damping �m �n [24].
Conclusions.—In summary, we have introduced an

approach to quantum information processing with nano-
mechanical qubits. Our approach is realizable with current
or near-future experimental technology. Importantly, the
nanomechanical resonators in our approach show very
promising scalability properties and are not vulnerable to
fluctuations of background charges such as supercon-
ducting qubits. The performance of our scheme could be
improved further with optimized laser and radio-frequency
control pulses. Alternative platforms for implementation
could consist of stiff nanobeams with high optomechanical
couplings such as photonic crystal nanobeam cavities in
diamond [31]. For building even larger scale devices,
our scheme could also be integrated into optomechanical
networks of multiple cavities [32].
The authors thank Ignacio Wilson-Rae and Alexander

Högele for fruitful discussions. This work is part of the
Emmy Noether Project No. HA 5593/1-1 and the CRC
No. 631, both funded by the German Research Foundation,
DFG.

(a) (b)

(c) (d)

FIG. 3 (color online). Error E ¼ 1� F of gate operations.
Except for the quantities on the horizontal axes, all parameters
are as in the setting described in the main text. Solid lines show
results for two qubits, and red dots show results for four qubits.
Highlighted red dots correspond to the parameter example dis-
cussed in the text. (a) Error as a function of the gate time for
local and entangling operations. Note that changing the gate time
also changes the required coupling rate. (b) Error as a function of
the laser detuning. [(c) and (d)] Illustration of the influence of
damping for the photons and resonators, respectively.
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