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We consider measurement-based quantum computation (MBQC) on thermal states of the interacting

cluster Hamiltonian containing interactions between the cluster stabilizers that undergoes thermal phase

transitions. We show that the long-range order of the symmetry breaking thermal states below a critical

temperature drastically enhances the robustness of MBQC against thermal excitations. Specifically, we

show the enhancement in two-dimensional cases and prove that MBQC is topologically protected below

the critical temperature in three-dimensional cases. The interacting cluster Hamiltonian allows us to

perform MBQC even at a temperature 1 order of magnitude higher than that of the free cluster

Hamiltonian.
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Introduction.—Measurement-based quantum computa-
tion (MBQC) is a paradigm for quantum computation,
where a many-body entangled state is prepared as a uni-
versal resource state, and quantum computation can be
executed by adaptive single-qubit measurements on it
[1]. This paradigm provides a good clue to understand
requirements on a system as a resource for universal quan-
tum computation, making a bridge between quantum in-
formation science and many-body physics. A central issue
in this approach is to specify a many-body system whose
ground or low-temperature thermal state can serve as a
universal resource for MBQC.

Ground states of several Hamiltonians such as the
cluster Hamiltonians [2–4] and valence-bond solid
Hamiltonians [5–9] have been found to be universal. At
finite temperature, thermal states of several Hamiltonians
have been shown to be useful as universal resources by
protecting quantum information from errors originating
from the thermal excitation by using quantum error cor-
rection [10–12]. However, these Hamiltonians do not
undergo any physical (thermal or quantum) phase transi-
tions, although they exhibit a transition in computational
capability of MBQC by varying temperature. Thus, we
address a question whether it is possible to enhance the
robustness of MBQC against thermal excitations by intro-
ducing a Hamiltonian that undergoes a phase transition.
This can strengthen the connection between quantum in-
formation science and many-body physics and can provide
an approach to understanding the robustness of MBQC in
terms of many-body physics.

In this Letter, we show that the robustness of MBQC
on thermal states can be enhanced drastically by introduc-
ing interactions between the cluster stabilizers. The pro-
posed Hamiltonian—an interacting cluster Hamiltonian

(iCH)—is transformed into a ferromagnetic Ising
Hamiltonian by unitary transformations. Hence, it under-
goes a phase transition on two- or higher-dimensional lat-
tices, leading to the symmetry breaking of the thermal
states. By virtue of the ferromagnetic-type long-range order
of such symmetry breaking states, MBQC becomes robust
below the critical temperature. We first demonstrate this on
a two-dimensional (2D) lattice and show that the fidelity of
MBQC can be drastically improved below the critical tem-
perature due to the long-range order, although it is not
sufficiently large at the temperature just below the critical
temperature. We further investigate topologically protected
MBQC on a three-dimensional (3D) lattice [2,13–19] in
order to achieve a quantum computation of arbitrary accu-
racy at any temperature below the critical temperature. We
show that the threshold value for the topologically protected
MBQC is exactly equal to the critical temperature of the
ferromagnetic Ising Hamiltonian in 3D. Compared to
the previous Hamiltonian without the interactions between
the cluster stabilizers [2], the temperature required for
topologically protected MBQC is relaxed by more than 1
order of magnitude.
Cluster Hamiltonian.—The cluster stabilizer on a lattice

T is given by Ki ¼ Xi

N
j2Vi

Zj for each site i, where Ai

(A ¼ X, Y, Z) are the Pauli operators on the ith qubit and
Vi denotes the set of the vertices that are adjacent to the site
i in the lattice T [1]. The cluster state on the lattice T ,
j�T i, is defined by the simultaneous eigenstate of all
cluster stabilizers Ki with eigenvalue þ1. The cluster
Hamiltonian is defined by using the cluster stabilizers as
Hfc ¼ �J

P
iKi [2] [see Fig. 1(a)], where J is a coupling

constant. It is obvious that this Hamiltonian has the cluster
state j�T i as its ground state. By using a unitary trans-
formation UT , the products of CONTROLLED-Z gates on all
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bonds of the latticeT , the Hamiltonian can be transformed
into an interaction-free Hamiltonian UTHfcUT ¼
�J

P
iXi. We call this Hamiltonian a free cluster

Hamiltonian (fCH) hereafter. It should be emphasized
that this system does not exhibit any phase transition since
the thermal state is equivalent to that for the interaction-
free Hamiltonian.

The thermal state of the Hamiltonian �J
P

iXi is given
by

Q
iðEijþihþjÞ, where Ei is a map defined by Ei� ¼

ð�þ e�2�JZi�ZiÞ=ð1þ e�2�JÞ. Thus, the thermal state of
the fCH can be calculated as ðQiEiÞj�T ih�T j, where we
used the fact that UT Ei�U

y
T

¼ EiUT �Uy
T

[2] (see the

Supplemental Material for the detailed calculations [20]).
The thermal state can be regarded as a cluster state with an
independent Z error on each qubit with probability p�J ¼
e�2�J=ð1þ e�2�JÞ. It has been known that it is possible to
performMBQC in a topologically protected way with a 3D
cluster state on the so-called Raussendorf-Harrington-
Goyal (RHG) lattice [17–19].

Next, we introduce an interacting cluster Hamiltonian
(iCH)Hic ¼ �J

P
hijiKiKj, where the summation runs over

all bonds hiji of the lattice T , and thus each cluster
stabilizer interacts with its nearest neighbors, as is shown
in Fig. 1(b) for the case of the square lattice. This indicates
that the iCH generally contains mutually dependent stabil-
izer operators. The iCH can be transformed to the ferro-
magnetic Ising Hamiltonian on the lattice T by UT as
UTHicUT ¼ �J

P
hijiXiXj, which is denoted by HIsing. If

the geometrical structure of the lattice is chosen properly,
for example, two- or higher-dimensional lattices, phase
transitions happen. Although each eigenstate of the iCH
j�i is degenerate withQi2T Zij�i due to the symmetry of
the iCH [20], we can project them onto a symmetry break-
ing thermal (SBT) state �SBT ¼ P�thP by measuring

cluster stabilizers, which are denoted by the projective
operator P. Note that these stabilizer measurements can
be implemented by using only single qubit measurements.
Then, the SBT state �SBT exhibits long-range order. The
thermal errors in the Ising model HIsing ¼ UTHicUT can

be regarded as strongly correlated Z errors. Since Z errors
and UT are commutable, the thermal state of the iCH has
the same Z error distribution as that on the Ising model (see
the Supplemental Material for the detailed calculations
[20]). MBQC on such SBT states would exploit the robust-
ness of long-range order.
MBQC on the square lattice iCH.—Let us first consider

MBQC in the iCH on a square lattice where a periodic
boundary condition is assumed. Since the iCH is unitarily
equivalent to the Ising Hamiltonian, the system undergoes

a phase transition at the critical temperature Tc=J ¼
2= ln½1þ ffiffiffi

2
p � [21]. To check whether the SBT state leads

to the robustness of MBQC, we consider performing the
identity and Hadamard gates, which are implemented by
the Z basis measurements for cutting the cluster state into a
line and by the X basis measurements for teleportation-
based gates [1,20] [see Fig. 1(c)].
The gate fidelity with the gate length l (identity and

Hadamard gates with even and odd l, respectively) is given
by

FðlÞ ¼ Tr

�
I þQdðl�1Þ=2e

i¼1 K2i

2

IþQdl=2e
i¼1 K2i�1

2
�th

�
; (1)

where �th ¼ e��H=Tre��H is a thermal state of a given
HamiltonianH [22] (see the Supplemental Material for the
detailed derivation [20]). In the case of the iCH, �th is
replaced by �SBT. The gate fidelity takes values between
1=4 and 1, and the minimum gate fidelity 1=4 implies that
the output state is the completely mixed state and the gate
operations fail. In the cases of the fCH and the iCH, by
applying the unitary transformation UT , the gate fidelity
FðlÞ is expressed in terms of the many-body correlation
functions of the interaction-free and the Ising models,
respectively. The results for the identity gates, Fð2lÞ with
l ¼ 2, 4, 6, and 8, are shown in Fig. 2 for the fCH and the
iCH (for the gate fidelity of the Hadamard gate, see the
Supplemental Material [20]).
For the fCH, the gate fidelities exponentially decrease

with an increase of temperature to 1=4 for any distance l.
For the iCH, the gate fidelities change differently below or
above the critical temperature; namely, the gate fidelities
also exhibit a transition at the critical temperature. Above
the critical temperature, the gate fidelities are close to 1=4.
In contrast, the SBT state appearing below the critical
temperature leads to a dramatic improvement of the gate
fidelities by exploiting its long-range order. The tempera-
ture required to perform the gate operation reliably for the
iCH is much higher than that for the fCH; e.g., the gate
fidelity for l ¼ 8 is almost 1 if T & 1:0J for the iCH and
T & 0:3J for the fCH.

FIG. 1 (color online). (a) The fCH on the square lattice.
(b) The iCH on the square lattice. (c) The measurement pattern
for the identity and the Hadamard gates of the gate length l on
the 2D cluster state. (d) The interacting cluster Hamiltonian on
the RHG lattice. (e) The 3D cluster state on the cubic lattice. The
gray-shaded qubits are measured in the Z basis to obtain the
cluster state on the RHG lattice.
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The identity and Hadamard gates are not sufficient for
universal MBQC. The fidelities of other gates, such as Z
rotations and CONTROLLED-Z gates, are also expressed in
terms of the many-body correlation function [22], and we
obtain similar results for these gates that form a universal
set of gates (see the Supplemental Material [20]). However,
even for the iCH, the fidelities just below the critical
temperature are not large enough to reliably carry out an
arbitrary number of gate operations. This motivates us to
consider topologically protected MBQC on the SBT states
on a 3D lattice, where fully fault-tolerant and universal
quantum computations can be performed.

Topologically protected MBQC.—Topologically pro-
tected MBQC can be performed with the cluster state on
the RHG lattice [17–19]. The RHG lattice is defined by the
set of cubesQ, the set of faces Fq on each cube q 2 Q, and

the set of edges Ef on each face f 2 Fq. The qubits are

located on each face and edge constituting the 3D cluster
state, where the nearest-neighbor stabilizer generators
interact with each other, as is shown in Fig. 1(c).
Similarly to the original case [17–19], the 3D cluster state
is subdivided into three regions, vacuum V, defect D, and
singular qubits S used for the topological protection, per-
forming Clifford gates, and performing an arbitrary single-
qubit gate, respectively. In the following, we consider the
threshold value for the topological protection in the vac-
uum region V since it solely determines a threshold of
quantum computation [17–19].

In the vacuum region V, all qubits are measured in the X
basis. Since

Q
f2Fq

Kf ¼
Q

f2Fq
Xf, the parity of the mea-

surement outcomes on the six face qubits on each unit cell
has to be even for the ideal cluster state. Thus, the Z errors
on the face qubits, say, error chain C, are detected at the
boundary @C, which is called the error syndrome of C,
since the error chain C anticommutes there with

Q
f2Fq

Xf.

This is also the case for the Z errors on the edge qubits, say,
error chain �C, since the edge qubits are the face qubits on
the dual lattice. In the case of the fCH on the RHG lattice

[2], the error chains C and �C, denoted by C � ðC; �CÞ, are
not correlated and can be treated independently. However,
in the case of the iCH, the primal and dual error chains
of C are strongly correlated and have to be treated
simultaneously.
By using the error syndrome @C, we infer the actual

locations of the errors. To this end, the probability of a
hypothetical error chain C0, which has the same error
syndrome @C, is calculated to be

pðC0j@C0Þ ¼ N �1 exp

�
�0J

X
hf �fi

uC
0

f u
�C0
�f

���������@C0¼@C
; (2)

where N is the normalization factor. We used the knowl-
edge that the errors occur with a ferromagnetic Ising-type
distribution (see the Supplemental Material [20]), which is
characterized by an inference parameter �0 independently
of the physical inverse temperature �. The indicator func-

tion uC
0

f is defined as uC
0

f ¼ �1 for f 2 C0 and uC0
f ¼ 1 for

f =2 C0, specifying the location of the errors. Since @C0 ¼
@C, we have C0 ¼ CþL for trivial loops (cycles) L �
ðL; �LÞ, where L is a trivial loop for the lattice and �L is for
the dual lattice, such that @L ¼ 0. In order to solve the
loop condition, we introduce gauge variables on the edges
of primal and dual lattices defined by Pf � uLf ¼Q

e2Ef
�e and �P �f � u

�L
�f
¼ Q

�e2 �E �f
�� �e. In this parametriza-

tion,
Q

f2Fq
Pf ¼ 1, and @L ¼ 0 is automatically satisfied.

As a result, we obtain the Gibbs-Boltzmann distribution

pðC0j@CÞ ¼ N �1e��0HCð�; ��Þ under a Hamiltonian given by

HCð�; ��Þ ¼ �J
P

hf �fiuCf u
�C
�f
Pf

�P �f, which we call the corre-

lated random-plaquette Z2 gauge model (cRPGM) [20].

The sign of the two plaquette interactions uCf u
�C
�f
represent-

ing the randomness of the model is determined by the

actual error chain C with the distribution pðCÞ �
N �1e

�J
P

hf �fiu
C
f
u

�C
�f parametrized by the physical inverse

temperature �.
Since the threshold value for topologically protected

MBQC corresponds to the critical point of the cRPGM
[14], our goal is to identify it. Let us consider the optimal
case of �0 ¼ �, where the actual and hypothetical error
distributions are the same. This condition is referred to as
the Nishimori line [23] in spin glass theory. In this case, the
internal energy is given by

½hHCð�; ��Þith�C ¼
X
C

pðCÞ X
f�e; �� �eg

HCð�; ��Þe��HCð�; ��Þ

ZCð�Þ ;

where h� � �ith denotes the thermal average and ZCð�Þ ¼P
f�e; �� �ege

��HCð�; ��Þ is the partition function. We take the

ensemble average of the error distributions ½� � ��C since the
internal energy of the cRPGM has a self-averaging property
[24]. With the aid of the gauge symmetry [23], the
HamiltonianHCð�; ��Þ is invariant under the following gauge
transformations uCf ! uCfP

0
f, �e ! �e�

0
e, u

�C
�f
! u

�C
�f
�P0
�f
,
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FIG. 2 (color online). The gate fidelities of the identity gates
for various distances l. (a) shows the gate fidelity for the fCH,
Fð2lÞ for l ¼ 2ð�Þ, l ¼ 4ðhÞ, l ¼ 6ðþÞ, and l ¼ 8ð�Þ. (b) shows
the gate fidelity for the iCH, Fð2lÞ for l ¼ 2ð�Þ, l ¼ 4ðhÞ, l ¼
6ðþÞ, and l ¼ 8ð�Þ. The vertical dashed line shows the critical
temperature for the 2D iCH Tc=J ¼ 2= ln½1þ ffiffiffi

2
p �, and the

horizontal dashed line shows the minimum gate fidelity F ¼
1=4.
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and �� �e ! �� �e ��
0
�e, where P0

f ¼
Q

e2Ef
�0

e and �P0
�f
¼Q

�e2 �E �f
��0
�e. On the other hand, these transformations

change the distribution pðCÞ into N �1e
�J
P

hf; �fiu
C
f
u

�C
�f
P0
f
�P0
�f ¼

N �1e��HCð�0; ��0Þ � p0ðCÞ, which corresponds to the
Gibbs-Boltzmann distribution for the cRPGM. SinceP

f�0; ��0gp0ðCÞ ¼ ZCð�Þ, we can mitigate the difficulty in

calculating the internal energy of the cRPGM by canceling
out ZCð�Þ as follows:
½hHCð�; ��Þith�C¼ 1

N

X
C

1

jLj
X

f�0
e; ��

0
�eg
p0ðCÞ

� X
f�e; �� �eg

HCð�; ��Þe��HCð�; ��Þ

ZCð�Þ

¼ 1

N jLj
X

f�e; �� �eg

X
C

HCð�; ��Þe��HCð�; ��Þ

¼N �1
X
C

HIsinge
��HIsing ¼hHIsingith;

where jLj is the number of the loop configurations,HIsing ¼
�J

P
hf; �fiuCf u

�C
�f
, andN is defined in Eq. (2) as the partition

function of the Ising model. For the transformation from the
third to the fourth lines, we take the summation

P
�e; �� �e

¼
jLj by using the fact that uCfPf ¼ uCþL

f and u
�C
�f
�P �f ¼ u

�Cþ �L
�f

,

with trivial loops L and
P

C ¼
P

CþL. That is, the gauge
variables Pf and �P �f are completely absorbed into the cou-

pling constant uCf u
�C
�f
by changing the variables C ! CþL.

Thus, the internal energy of cRPGM is equivalent to that of
the Ising model without any randomness.

In the Ising model on the RHG lattice, the internal
energy has a nonanalytical point at Tc ¼ 2:8, which is
evaluated by the exchange Monte Carlo simulation [25].
Therefore, we can conclude that the internal energy of the
cRPGM along the Nishimori line also has a nonanalytical
point at Tc ¼ 2:8, which is the phase boundary of the
Higgs (ordered) and confinement (disordered) phases
[14–16]. In the Higgs phase, the loop configurations L of
large perimeters are exponentially suppressed. Thus, the
logical error probability, which is characterized by the loop
configurations of nontrivial topology, is decreased expo-
nentially by increasing the size of the system (see the
Supplemental Material [20] for the decoding methods).
That is, the transition point of the performance in topo-
logically protected MBQC on the SBT states is exactly
determined by the critical temperature of the phase tran-
sition in the underlying physical system.

The cluster state on the RHG lattice can be also obtained
from other lattices such as simple cubic (SC), face-
centered cubic, and close-packed hexagonal lattices by
measuring appropriate qubits in the Z basis, as is shown
in Fig. 1(d) in the case of the SC lattice. Since the thermal
errors commute with the Z basis measurements in our
model, they do not induce any additional errors. Also, in

these cases, by using the gauge transformation, we can
show that the thresholds for topologically protectedMBQC
are again given by the critical temperatures of the iCHs on
those lattices. The critical temperatures of the Ising models
on the SC, close-packed hexagonal, and face-centered
cubic lattices have been calculated numerically as Tc ¼
4:5, 9.3, and 9.8, respectively [26], which are higher than
Tc ¼ 2:8 for the RHG lattice, since each site interacts with
more neighboring sites. In comparison with Tc ¼ 0:59 for
the fCH, the iCHs with the long-range order relax the
temperature required for topologically protected MBQC
by more than 1 order of magnitude. In the fCHs, the lattice
structures do not change the threshold value for the topo-
logical protection since the thermal errors occur indepen-
dently for each qubit. Contrarily, in the iCHs, the
underlying lattice structures take a very important role in
robustness against the thermal excitation by making use of
physical cooperative phenomena.
Conclusions and discussions.—We have demonstrated

that the physical cooperative phenomena of a system can
help MBQC on the system even at finite temperature. We
have first shown that, in a square lattice, the gate fidelities of
the identity gates for the iCH are drastically improved
compared to those for the fCH below the critical tempera-
ture. It has been also shown that the fidelities are not
sufficiently large for performing MBQC reliably at the
temperature just below the critical temperature even for
the iCH. In the 3D cases, MBQC on the thermal states are
topologically protected below the critical temperatures of
the underlying physical system, which allows us to perform
MBQC on the SBT states even at much higher temperatures
than the models without physical cooperative phenomena.
A promising way to design these many-body interactions
used in both fCH and iCH is the stabilizer pumping scheme
[27–30] (see the Supplemental Material for a detailed dis-
cussion [20]). Although achieving larger many-body inter-
actions requires more unitary operations in the scheme, the
required temperatures for performing topologically pro-
tected MBQC is significantly relaxed for the iCH.
In the present work, we have considered only the Ising-

type interaction in the stabilizer Hamiltonian. We can also
construct the iCHs, which are unitarily equivalent to other
spin models such as the Potts, XY, and Heisenberg models.
It is an interesting future work to study the relation between
the ordered phase and quantum information tasks in such
models. This will open up a new approach to make use of
physical cooperative phenomena for quantum information
processing.
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Grant-in-Aid for Scientific Research on Innovative
Areas No. 20104003, and Grant-in-Aid for Young
Scientists (B) No. 24740263), and by JSPS (Grants
No. 222812, No. 23540463, and No. 23240001).

PRL 110, 120502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 MARCH 2013

120502-4



[1] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001); R. Raussendorf, D. E. Browne, and H. J. Briegel,
Phys. Rev. A 68, 022312 (2003).

[2] R. Raussendorf, S. Bravyi, and J. Harrington, Phys. Rev. A
71, 062313 (2005).

[3] F. Verstraete and J. I. Cirac, Phys. Rev. A 70, 060302(R)
(2004).

[4] S. D. Bartlett and T. Rudolph, Phys. Rev. A 74, 040302(R)
(2006).

[5] G. K. Brennen and A. Miyake, Phys. Rev. Lett. 101,
010502 (2008).

[6] X. Chen, B. Zeng, Z.-C. Gu, B. Yoshida, and I. L. Chuang,
Phys. Rev. Lett. 102, 220501 (2009).

[7] J. Cai, A. Miyake, W. Dür, and H. J. Briegel, Phys. Rev. A
82, 052309 (2010).

[8] T.-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett.
106, 070501 (2011).

[9] A. Miyake, Ann. Phys. (Amsterdam) 326, 1656
(2011).

[10] S. D. Barrett, S. D. Bartlett, A. C. Doherty, D. Jennings,
and T. Rudolph, Phys. Rev. A 80, 062328 (2009).

[11] Y. Li, D. E. Browne, L. C. Kwek, R. Raussendorf, and
T.-C. Wei, Phys. Rev. Lett. 107, 060501 (2011).

[12] K. Fujii and T. Morimae, Phys. Rev. A 85, 010304
(2012).

[13] A. Yu. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[14] E. Dennis, A. Yu. Kitaev, A. Landahl, and J. Preskill,

J. Math. Phys. (N.Y.) 43, 4452 (2002).
[15] C. Wang, J. Harrington, and J. Preskill, Ann. Phys.

(Amsterdam) 303, 31 (2003).

[16] T. Ohno, G. Arakawa, I. Ichinose, and T. Matsui, Nucl.
Phys. B697, 462 (2004).

[17] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys.
(Amsterdam) 321, 2242 (2006).

[18] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98,
190504 (2007).

[19] R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys.
9, 199 (2007).

[20] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.120502 for de-
tailed calculations.

[21] L. Onsager, Phys. Rev. 65, 117 (1944).
[22] A. C. Doherty and S. D. Bartlett, Phys. Rev. Lett. 103,

020506 (2009).
[23] H. Nishimori, Prog. Theor. Phys. 66, 1169 (1981).
[24] H. Nishimori, Statistical Spin Glasses and Information

Processing: An Introduction (Oxford University Press,
New York, 2001).

[25] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

[26] A. N. C. de Magalhaes and C. Tsallis, J. Phys. IV 42, 1515
(1981).

[27] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
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