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We examine the relationship between quantum contextuality (in both the standard Kochen-Specker sense

and in the generalized sense proposed by Spekkens) and models of quantum theory in which the quantum

state is maximally epistemic. We find that preparation noncontextual models must be maximally epistemic,

and these in turn must be Kochen-Specker noncontextual. This implies that the Kochen-Specker theorem is

sufficient to establish both the impossibility of maximally epistemic models and the impossibility of

preparation noncontextual models. The implication from preparation noncontextual to maximally epistemic

then also yields a proof of Bell’s theorem from an Einstein-Podolsky-Rosen-like argument.
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The nature of the quantum state has been debated since
the early days of quantum theory. Is it a state of knowledge
or information (an epistemic state), or is it a state of
physical reality (an ontic state)? One of the reasons for
being interested in this question is that many of the phe-
nomena of quantum theory are explained quite naturally in
terms of the epistemic view of quantum states [1]. For
example, the fact that nonorthogonal quantum states can-
not be perfectly distinguished is puzzling if they corre-
spond to distinct states of reality. However, on the
epistemic view, a quantum state is represented by a proba-
bility distribution over ontic states, and nonorthogonal
quantum states correspond to overlapping probability
distributions. Indistinguishability is explained by the fact
that preparations of the two quantum states would some-
times result in the same ontic state, and in those cases
there would be nothing existing in reality that could dis-
tinguish the two.

Several theorems have recently been proved showing
that the quantum state must be an ontic state [2,3]. Most
of these have been proved within the ontological models
framework [4], which generalizes the hidden variable
approach used to prove earlier no-go results, such as
Bell’s theorem [5] and the Bell-Kochen-Specker theorem
[6,7]. However, each of these new theorems rests on aux-
iliary assumptions, of varying degrees of reasonableness.
For example, the Pusey-Barrett-Rudolph theorem [2]
assumes that the ontic states of two systems prepared in
a product state are statistically independent, and the
Colbeck-Renner result [3] employs a strong ‘‘free choice’’
assumption that rules out deterministic theories a priori.
An explicit counterexample shows that these proofs cannot
be made to work without such auxiliary assumptions [8].

The requirement of ontic quantum states is perhaps the
strongest constraint on hidden variable theories that has
been proved to date. It immediately implies preparation
contextuality (within the generalized approach to contex-
tuality of Spekkens [9]), a version of Bell’s theorem, and
that the ontic state space must be infinite, with a number of

parameters that increases exponentially with Hilbert space
dimension. See Ref. [10] for a discussion of these impli-
cations. However, the auxiliary assumptions used in the
proofs of the onticity of quantum states carry over into
these corollaries whereas the original proofs of these
results [5,9,11] did not require them. For this reason, it is
interesting to look for results addressing the distinction
between ontic and epistemic quantum states that are
weaker than completely ontic, but can be proved without
auxiliary assumptions, since such results may sit near the
top of a hierarchy of no-go theorems.
Recently, one of us introduced a stronger notion of what

it means for the quantum state to be epistemic and proved
that it is incompatible with the predictions of quantum
theory without any auxiliary assumptions [12]. An onto-
logical model is maximally c -epistemic if the quantum
probability of obtaining the outcome j�iwhen measuring a
system prepared in the state jc i is entirely accounted for
by the overlap between the corresponding probability dis-
tributions in the ontological model. This property is
required if the epistemic explanation of the indistinguish-
ability of nonorthogonal states is to be strictly true. It is
satisfied by the c -epistemic model of two-dimensional
Hilbert spaces proposed by Kochen and Specker [4,7],
and its analog is satisfied by the epistemic toy model of
Spekkens [1].
In this Letter, we explain how this stronger notion of

quantum state epistemicity relates to other no-go theorems,
particularly the traditional notion of noncontextuality used
in proofs of the Kochen-Specker theorem and Spekkens’
notion of preparation contextuality. Briefly, Kochen-
Specker noncontextuality applies to deterministic models,
and says that if an outcome corresponding to some projec-
tor is certain to occur in one measurement then outcomes
corresponding to the same projector in other measurements
must also be certain to occur. Preparation noncontextuality
says that preparation procedures corresponding to the same
density operator must be assigned the same probability
distribution. Our results can be summarized as
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Preparation noncontextual ) Maximallyc -epistemic ) Kochen-Specker noncontextual: (1)

Both implications are strict, which we demonstrate with
specific examples of models that are Kochen-Specker non-
contextual but not maximally c -epistemic, and maximally
c -epistemic but not preparation noncontextual. Since the
no-go theorem for maximally epistemic models does not
require auxiliary assumptions, these implications provide a
stronger proof of preparation contextuality and Bell’s theo-
rem than those obtained from other no-go theorems for
c -epistemic models.
We are interested in ontological models that reproduce

the quantum predictions for a set of prepare-and-measure
experiments. The experimenter can perform measurements
of a set of orthonormal bases M ¼ fM1;M2; . . .g on the
system. LetP ¼ [M2MM denote the set of quantum states
that occur in one or more of these bases. Prior to the
measurement, the experimenter can prepare the system in
any of the states in P .

An ontological model for M specifies a measure
space (�, d�) of ontic states. Each state jc i 2 P is
associated with a probability distribution �c ð�Þ [13,15]
over � and each measurement M 2 M is associated with
a set of positive response functions �Mð�j�Þ that satisfyP

j�i2M�Mð�j�Þ ¼ 1 for all � 2 �. The ontological model

is required to reproduce the Born rule, which means that
8 jc i 2 P , M 2 M, j�i 2 M,

Z

�
�Mð�j�Þ�c ð�Þd� ¼ jh�jc ij2: (2)

For each state jc i 2 P , define �c ¼ f�j�c ð�Þ> 0g.
We assume that� ¼ [jc i2P�c , since otherwise there will

be superfluous ontic states that are never prepared. Two
important facts, of which we make repeated use, are that in
order to reproduce jhc jc ij2 ¼ 1 in Eq. (2), for every M
that contains jc i it must be the case that �Mðc j�Þ ¼ 1
almost everywhere on�c , and for all orthogonal j�i 2 M,

such that jh�jc ij2 ¼ 0, �Mð�j�Þ ¼ 0 almost everywhere
on �c . This implies that �c \�� is of measure zero for

orthogonal jc i and j�i.
A c -ontic ontological model is one in which, for any

pair of nonorthogonal quantum states jc i � j�i, �c \
�� is of measure zero. This means that, if one knows the

ontic state then the prepared quantum state can be identi-
fied almost surely. Conversely, if �c \�� has positive

measure for some pair of states, then the model is
c -epistemic.
An ontological model is maximally c -epistemic ifR

��
�c ð�Þd� ¼ jh�jc ij2 for every jc i, j�i 2 P .

Since �Mð�j�Þ ¼ 1 almost everywhere on ��, thenR
��

�Mð�j�Þ�c ð�Þd� ¼ jh�jc ij2. The probability of

obtaining the outcome j�i when measuring a system pre-
pared in the state jc i is entirely accounted for by the
overlap between �c and ��.

The traditional notion of noncontextuality used in proofs
of the Kochen-Specker theorem is the combination of two
conditions: 1. An ontological model is outcome determi-
nistic if �Mð�j�Þ 2 f0; 1g almost everywhere on �, for all
M 2 M, j�i 2 M. 2. An ontological model is measure-
ment noncontextual if, whenever M, M0 2 M contain a
common state j�i, �Mð�j�Þ ¼ �M0 ð�j�Þ almost every-
where on �.
Theorem 1: If an ontological model ofM is maximally

c -epistemic then it is also outcome deterministic and
measurement noncontextual.
Proof.—The proof closely parallels that of the ‘‘quantum

deficit theorem’’ [16]. As mentioned above, for any j�i 2
P , �Mð�j�Þ ¼ 1 almost everywhere on �� for every

M 2 M that contains j�i. Hence, it is also equal to 1
almost everywhere on �� \�c , since �c has positive

measure. In order to reproduce the Born rule, the ontolog-
ical model must satisfy

Z

�
�Mð�j�Þ�c ð�Þd� ¼ jh�jc ij2; (3)

but a maximally c -epistemic theory must also satisfy

Z

��

�Mð�j�Þ�c ð�Þd� ¼ jh�jc ij2: (4)

Given that these two equations must hold for all jc i 2 P ,
comparing them yields �Mð�j�Þ ¼ 0 almost everywhere
on�n��. Thus, the model is outcome deterministic. Since

the same argument holds for everyM in which j�i appears,
the model is measurement noncontextual. j
The implication in this theorem is strict; i.e., there exist

Kochen-Specker noncontextual models that are not
maximally c -epistemic. An example is provided by the
Bell-Mermin model [6,17], in which M consists of all
orthonormal bases in a two-dimensional Hilbert space. The
ontic state space of the model consists of the Cartesian
product of two copies of the unit sphere � ¼ S2 � S2, and

we denote the ontic states as � ¼ ð ~�1; ~�2Þ, where ~�j 2 S2.

For a state jc i, let ~c denote the corresponding Bloch
vector. The distribution associated with jc i in the onto-

logical model is a product �c ð�Þ ¼ �c ð ~�1Þ�c ð ~�2Þ,
where �c ð ~�1Þ ¼ �ð ~�1 � ~c Þ is a point measure on ~c

[18] and �c ð ~�2Þ ¼ 1
4� is the uniform measure on S2. It is

easy to see that this model is not maximally c -epistemic
because �c \�� ¼ ; for distinct jc i and j�i due to the

�-function term. In fact the model is c ontic.
The response functions of the model are

�Mð�j�Þ ¼ �ð ~� � ð ~�1 þ ~�2ÞÞ; (5)

where � is the Heaviside step function
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�ðxÞ ¼ 1; x > 0 (6)

¼ 0; x � 0: (7)

This model is outcome deterministic because � only takes
the values 0 and 1, and it is measurement noncontextual
because the right-hand side of Eq. (5) does not depend onM.
It is straightforward to check that the model reproduces the
quantum predictions.

In order to understand the connection between maxi-
mally c -epistemic models and preparation contextuality,
we need to describe how (proper) mixtures are represented
in ontological models. Assume that, in addition to prepar-
ing the pure states in P , the experimenter can also prepare
mixtures of them by generating classical randomness (by
flipping coins, rolling dice, etc.) with probability distribu-
tion pj and then preparing a different state jc ji 2 P
depending on the outcome, resulting in the density operator
� ¼ P

jpjjc jihc jj [19]. The classical randomness is

assumed to be independent of the ontic state of the quan-
tum system, so that the distribution over ontic states asso-
ciated with preparing the ensemble E ¼ fpj; jc jig is

�E ¼ P
jpj�c j

ð�Þ. An ontological model is preparation

noncontextual if �Eð�Þ depends only on the density opera-
tor �, and not on the specific ensemble decomposition, E ¼
fpj; jc jig, used to prepare it. Otherwise the model is

preparation contextual.
Theorem 2: Suppose an ontological model of M is not

maximally c -epistemic, so that there exist states jc i,
j�i 2 P such that

Z

��

�c ð�Þd� < jh�jc ij2: (8)

Then, if P includes the states jc?i, j�?i that satisfy
hc?jc i ¼ 0 and h�?j�i ¼ 0, and are in the subspace
spanned by jc i and j�i, then the model is also preparation
contextual.

Proof.—By Eq. (2), for any M containing j�i,

jh�jc ij2 ¼
Z

�
�Mð�j�Þ�c ð�Þd� (9)

�
Z

��

�Mð�j�Þ�c ð�Þd� ¼
Z

��

�c ð�Þd�; (10)

where the last line follows because �Mð�j�Þ ¼ 1 almost
everywhere on ��. By assumption, the inequality must be

strict, so we have

Z

��

�Mð�j�Þ�c ð�Þd� <
Z

�
�Mð�j�Þ�c ð�Þd�: (11)

This means that there must be a set� of ontic states that
is disjoint from��, is assigned nonzero probability by�c ,

and is such that �Mð�j�Þ> 0 for � 2 �. Now, consider
the two mixed preparations: 1. Prepare jc i with probabil-
ity 1=2 and jc?i with probability 1=2. 2. Prepare j�i with

probability 1=2 and j�?i with probability 1=2. The result-
ing density operators, �1 and �2, satisfy �1 ¼ �2 ¼ 1

2�,

where� is the projector onto the subspace spanned by jc i
and j�i. Let �1 ¼ �c [�c? and �2 ¼ �� [��? be the

supports of the corresponding distributions, �1 ¼ 1
2 ð�c þ

�c?Þ and �2 ¼ 1
2 ð�� þ��?Þ, in the ontological model.

Now, �1 \� is assigned nonzero probability by �1,
whereas �2 assigns probability zero to �. This is because
�� is disjoint from � by definition and ��? must assign

zero probability to any set of ontic states that assign
nonzero probability to j�i in a measurement of any
orthonormal basis that contains it. Hence �1 and �2

must be distinct because their supports differ by a set of
positive measure. j
A simple corollary of this theorem is that, whenever the

states jc?i and j�?i are in P for every jc i, j�i 2 P ,
then any preparation noncontextual ontological model is
also maximally c -epistemic. As in the case of Kochen-
Specker contextuality, this implication is strict; i.e., there
are maximally c -epistemic models that are preparation
contextual. An example is provided by the Kochen-
Specker model [7], which again takes M to be all ortho-
normal bases in a two-dimensional Hilbert space. This
time, the ontic state space is just a single copy of the unit

sphere� ¼ S2 and the ontic states are unit vectors ~� 2 S2.
The probability distribution associated with a quantum
state jc i is

�c ð ~�Þ ¼ 1

�
�ð ~c � ~�Þ ~c � ~� (12)

and the response function associated with a quantum state
j�i is

�Mð�j�Þ ¼ �ð ~� � ~�Þ: (13)

It is straightforward to check that this model reproduces the
quantum predictions.

The model is maximally c -epistemic because �� ¼
f�j�ð ~� � ~�Þ ¼ 1g and thus

jh�jc ij2 ¼
Z

�
�Mð�j�Þ�c ð ~�Þd� (14)

¼
Z

�
�ð ~� � ~�Þ�c ð ~�Þd� (15)

¼
Z

��

�c ð ~�Þd�: (16)

On the other hand, the model is preparation contextual
as can be seen by considering the two preparations 1.
Prepare j þ zi with probability 1=2 and j � zi with proba-
bility 1=2. 2. Prepare j þ xiwith probability 1=2 and j � xi
with probability 1=2. Both preparations correspond to the
maximally mixed state, but the distributions 1

2 ð�þz þ��zÞ
and 1

2 ð�þx þ��xÞ are different. In particular, both �þz
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and ��z are zero on the equator whereas �þx and ��x are
both nonzero here.

Theorem 1 implies that any proof of the Kochen-Specker
theorem is sufficient to establish thatmaximally c -epistemic
models are impossible for Hilbert spaces of dimension
greater than two. Unlike the proof in Ref. [12], however,
this does not establish a bound on how close to maximally
c -epistemic one can get. Further, the Kochen-Specker theo-
rem allows a finite precision loophole [20] that can be
exploited to allow noncontextual theories to get arbitrarily
close to quantum statistics, so it seems unlikely that this proof
could be made robust against experimental error.

Combining the two theorems also shows that the
Kochen-Specker theorem is enough to establish prepara-
tion contextuality. While it was known that preparation
noncontextuality implies outcome determinism for models
of quantum theory [9], it is a novel implication that it also
implies measurement noncontextuality. This demonstrates
that the distinction between ontic and epistemic quantum
states is useful for understanding the relationship between
existing no-go theorems.

Finally, the type of preparation contextuality established
by our results can be used to prove Bell’s theorem. Briefly,
if jc i and j�i are states such that

Z

��

�c ð�Þd� < jh�jc ij2 (17)

then we can demonstrate nonlocality using a maximally
entangled state 1ffiffi

2
p ðjc iAjc iB þ jc?iAjc?iBÞ. Since the

reduced density matrix on Bob’s system is

� ¼ 1

2
ðjc ihc j þ jc?ihc?jÞ (18)

¼ 1

2
ðj�ih�j þ j�?ih�?jÞ; (19)

by the Schrödinger-HJW theorem [21] there are two mea-
surements that Alice can perform, the first of which will
collapse Bob’s system to jc i or jc?i with 50:50 proba-
bilities, and the second of which will collapse it to j�i or
j�?i with 50:50 probabilities. However, Theorem 2 estab-
lishes that these two ensembles cannot correspond to the
same probability distribution over ontic states. Thus, the
distribution on Bob’s side must depend on the choice of
measurement that Alice makes, which implies Bell non-
locality. This argument generalizes the proof of Ref. [4],
which showed that local theories would have to be
c -epistemic. In fact, we see that they would have to be
maximally c -epistemic. Filling in the formal details of this
argument can be done in a similar way to Ref. [4].

While the impossibility of a maximally c -epistemic
theory clarifies what can be proved about contextuality
based on the distinction between ontic and epistemic inter-
pretations of the quantum state without auxiliary assump-
tions, it is not sufficient to establish the constraints on the
size of the ontic state space that follow from having
fully ontic quantum states [11]. If one could prove,

without auxiliary assumptions, that the support of every
distribution in an ontological model must contain a set
of states that are not shared by the distribution correspond-
ing to any other quantum state, then these results would
follow. Whether this can be proved is an important
open question.
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