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An accessibility graph of a network contains a link wherever there is a path of arbitrary length between

two nodes. We generalize the concept of accessibility to temporal networks. Building an accessibility

graph by consecutively adding paths of growing length (unfolding), we obtain information about the

distribution of shortest path durations and characteristic time scales in temporal networks. Moreover, we

define causal fidelity to measure the goodness of their static representation. The practicability of our

proposed methods is demonstrated for three examples: networks of social contacts, livestock trade, and

sexual contacts.
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Many real-world systems can be described in terms of
networks [1], i.e., sets of nodes, or vertices, and edges
connecting node pairs. Prominent examples are social
contacts, flow of people between cities, trade between
countries, or the World Wide Web [2–6]. In many cases,
a static network description is sufficient: an edge is drawn
whenever a connection between the corresponding nodes
was established during the whole data acquisition time.
Mathematically, static networks are considered as graphs
and can be represented by adjacency matrices. These con-
tain unit elements in the entries corresponding to the
indices of nodes connected by an edge, all other elements
being zeros. This representation is used in a large number
of algebraic methods for network analysis [7,8].

Every route across the network connecting two vertices
along the network’s edges is called a path. For a macro-
scopic view of a network, it is often sufficient to know
whether the nodes are connected by a path of whatever
length, i.e., whether one node is accessible starting from
another one. Accessibility can be mapped onto a single
mathematical object, the accessibility matrix of the net-
work, containing unit entries for indices corresponding to
the pairs of the nodes connected by paths of arbitrary
length [7,8]. This matrix is the adjacency matrix of the
accessibility graph. To build this graph, one starts with the
network itself and first adds edges between the nodes
connected by paths of length 2. Then one subsequently
adds longer paths as edges step by step (Fig. 1) until there
are no more new paths to add. It turns out that valuable
insights into the network structure are not only given by the
accessibility graph itself, but also by the graphs obtained
on intermediate stages of its step-by-step construction.

We call this step-by-step construction the unfolding of
the accessibility graph.
Although the concept of accessibility is plausible in

static networks, it is still not clear how to generalize it to
networks, where edges are not constant over time. Many
systems have to be represented as temporal networks: their
nodes being fixed, but edges, representing connections
between them, are only present during certain periods of
time [9–14]; see Refs. [15,16] for a review. Temporal net-
works are not graphs and cannot in general be represented
by single matrices. Therefore, most attention on temporal
networks has focused on data-driven approaches
[10,12,17]. Coevolutionary models have been proposed
to understand the mechanisms behind network formation
[18,19]. Work concerning macroscopic properties of tem-
poral networks is rare. This is partly due to the absence of
an established formalism to treat these objects [15,20]. A
time-aggregated, static representation of a temporal net-
work may contain paths which do not follow a causal
sequence of connections between nodes, i.e., paths which

...

FIG. 1. Unfolding of an accessibility graph. Starting with a
network (left) we unfold its accessibility graph by adding direct
edges for paths of length 2 (center) and so forth. The fully
unfolded accessibility graph is shown on the right.
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cannot be taken in a real system. Therefore, a static repre-
sentation may be insufficient for the description of a tem-
poral network.

The first step for the introduction of a formalism for
temporal networks will thus be taking into account the
causality of paths. In the present Letter we introduce
accessibility graphs of temporal networks and use them
for a description of their macroscopic properties. In addi-
tion, we define the measure of causal fidelity quantifying
the goodness of a static representation of a temporal net-
work. We first briefly review the basic concept of accessi-
bility in static networks and introduce the method of
unfolding accessibility for the static case. Then we discuss
generalizations of the concept of accessibility to temporal
networks. Finally, we analyze three different data sets with
respect to their characteristic time scales and compare their
temporal and static representations.

Let us consider a static network G ¼ ðV; EÞ, where V is
the set of vertices and E is the set of edges. The network is
represented by an adjacency matrix A, with ðAÞuv ¼ 1 if
there is an edge between nodes u and v, and ðAÞuv ¼ 0
otherwise. The accessibility graph (transitive closure) of a
static network is denoted by G� ¼ ðV;E�Þ. It contains an
edge ðu; vÞ 2 E� if a path of arbitrary length exists
between the nodes u and v. Given an adjacency matrix
A, the elements of the matrix An are the numbers of paths
of length n connecting pairs of nodes of the graph.
Consequently, the cumulative matrix Cn ¼ AþA2 þ
� � � þAn has a nonzero entry ðCnÞuv � 0 if the nodes u
and v are connected by a path of whatever length smaller
than or equal to n. Summing up all powers of the adjacency
matrix, i.e., building a matrix Cn¼N ¼ P

N
i¼1 A

i (where N
is the total number of nodes in the network), is related to
the transitive closure of the network.

Provided that we are interested only in the number of
nodes that can be reached from each initial node within n
steps, we record whether the elements of Cn are zero or
not. Changing every nonzero element of Cn to unity yields
the accessibility matrix Pn. The matrix Pn (with binary
entries) can be treated as a Boolean matrix. Alternatively,
one can consider the adjacency matrix A as a Boolean
matrix from the very beginning. The product of two
Boolean matrices is defined by using normal algebra, but
Boolean arithmetics, interpreting multiplication as a logi-
cal AND (^) operation and addition as a logical OR (_)
operation. The product of two Boolean matrices is
ðABÞij ¼

W
N
k¼1 aik ^ bkj. In this notation, the accessibility

matrix Pn of path length n becomes [21]

Pn ¼
_n

i¼1

Ai; (1)

where the ith power of the Boolean matrix A is computed
using Boolean matrix products. A brief discussion of some
properties of the fully exploited accessibility graph Pn¼N is
given in the Supplemental Material [22]. The number of

edges in P1 gives the number of paths of length 1, and at
every step n ! nþ 1 the network is traversed by paths
with one more edge. Thus, Eq. (1) corresponds to a
breadth-first search (BFS) in the network. This relation is
also used in the Floyd-Warshall algorithm [21,23] for the
computation of shortest path lengths. When the BFS
reaches the diameter D of the network, i.e., there are no
more shortest paths to traverse, the accessibility matrix
saturates, PN ¼ PD.
The total number of nonzero elements of the accessibil-

ity matrix Pn is associated with the distribution of shortest
path lengths. We define the density �ðAÞ of an N � N
matrix A with N2 entries and nnzðAÞ nonzero elements as

�ðAÞ ¼ nnzðAÞ
N2

: (2)

When A is an adjacency matrix, �ðAÞ defines the edge
density of the network, giving the probability to find an
edge between two nodes chosen at random. In analogy, the
probability to find a path of length l � n between two
randomly chosen nodes in a connected network is given by

Fn ¼ Pðl � nÞ � �ðPnÞ: (3)

Consequently, the path density �ðPnÞ gives the cumulative
distribution of shortest path lengths in the network. The
corresponding probability to find the shortest path of
length n is given by fn ¼ ðFn � Fn�1Þ, with F0 ¼ 0.
The distribution saturates when n reaches the diameter D
of the network. For a single-component network FD ¼
�ðPDÞ ¼ 1. For networks composed of disjoint compo-
nents �ðPDÞ< 1, since their accessibility matrices have
less than N2 nonzero entries [22]. In this case we consider
Fn as an ‘‘improper’’ probability distribution, which is not
normalized to unity, and define its median as the value of n,
where Fn approaches one-half of its saturation value FD.
Temporal networks allow edges to vary over time, and

are represented by a sequence of adjacency matricesA ¼
fA1;A2; . . . ;ATg, where each matrixAt is a snapshot of the
system at time t. The increment corresponds to the tempo-
ral resolution and T is the maximal time given in the data.
The accessibility graph G� ¼ ðV; E�Þ of a temporal net-
work has to allow for only causal paths (time respecting
paths), in which the temporal order of edges has to be taken
into account: it contains an edge ðu; vÞ 2 E� if and only if
there is a causal path between the nodes u and v. A time-
aggregated, static representation follows by summing up
all (Boolean) matrices in the sequence, A ¼ _T

t¼1At.
As we have seen for the static case, the product of two

identical adjacency matrices gives information about the
number of paths of length 2. If we multiply different
matrices, i.e., two matrices A1 and A2 in the sequence
A, we obtain nonzero entries wherever nodes receive
edges at time 1 and cast forth edges at time 2. It is
important to emphasize that the entries ðA1A2Þij vanish if

an edge received by node i at time 1 is not cast forth to
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node j at exactly time 2. Using products of different
adjacency matrices in the sequence A, we could derive a
dynamic accessibility matrix exactly as it was done in the
static case. Many systems, however, show significant wait-
ing times between node activities [24]. Therefore, this
straightforward approach does not give useful results
because it does not include the possibility of node waiting
times (see Supplemental Material [22]).

To overcome this drawback, we allow for temporal
shortcuts in the accessibility matrix by taking into account
products of adjacency matrices corresponding to remote
time steps. As an example, if many nodes in the system
receive links at time 5 and cast forth links at time 100, the
product A5A100 should make a large contribution to the
accessibility matrix. To introduce shortcuts, we define
the accessibility matrix of a temporal network by adding
an identity matrix 1 to each matrixAi in the sequence. This
yields all ordered products of snapshot matrices in time:
Cn ¼ Q

n
i¼1ð1þAiÞ. The addition of an identity matrix can

be interpreted as the ability of each node to keep edge
information over time; i.e., it introduces memory into the
system. We have to point out that this analysis focuses on
systems with infinite memory.

Since we are not interested in the actual number of paths
between two nodes, we can either set any nonzero element
of Cn to unity or, equivalently, use the Boolean formulation

P n ¼
n̂

i¼1

ð1 _AiÞ

¼ 1 _A1 _A2 _A3 _ � � � _An _A1A2

_A2A3 _A1A3 _A1A2A3 _ . . . : (4)

Linear terms in (4) correspond to the aggregated network.
Higher order products (always respecting a causal
sequence of indices) represent all possible direct connec-
tions or temporal shortcuts. It should be noted that, due to
the causality of the paths, the temporal accessibility graph
of an undirected network is in general directed. The
unfolding of the accessibility matrix given in (4) can now
be used to compute shortest-path distributions Fn for tem-
poral networks in the same manner as for the static case.
Note that the index n now has the meaning of the duration
of the path (total number of time steps necessary to traverse
the system, regarding waiting times). It defines the time
(in units determined by the temporal resolution of the used
data) which, say, the passengers spent in motion. Thus, a
temporal network may still show a small-world property as
long as its time-aggregated representation is a small-world
network. However, if the the links between nodes are
activated only during distant periods in time, the spread
over the network would be slow: even a small world can be
a ‘‘slow world.’’

The fully unfolded accessibility graph can in principle
be used to detect temporal connected components in the
network. Therefore, it is sufficient to detect cliques in the

symmetric part of P n¼N [25]. As mentioned in Ref. [25],
finding cliques is known to be NP complete even in static
networks and cliques are in general degenerated in tempo-
ral systems.
We have to point out that the identity matrix on the right-

hand side of (4) is an artifact of the introduced memory
term. It does not make any difference in undirected
networks, whose accessibility matrices always exhibit
nonvanishing diagonal entries for n � 2 [22], but may
make a difference in directed networks. However, since
the number of diagonal elements is small compared to the
total number of elements of a large matrix, this deviation is
negligible in large networks.
Temporal networks are often approximated by their

time-aggregated counterparts. However, some paths in a
static network representation do not follow a chronological
order and are never taken. In order to quantify the quality
of a static representation, we define the causal fidelity c as
the fraction of the number of paths in a static network
which can also be taken in a temporal one:

c ¼ �ðP TÞ
�ðPTÞ : (5)

The values of c lay in the interval 0 � c � 1, where c ¼ 1
means that the path density of a static representation does
not differ from the temporal system. Low values of c
indicate that the majority of paths in the static approxima-
tion do not follow a causal sequence of edges and thus are
not present in the temporal one.
As examples, we consider several real-world networks

showing different time scales ranging from 3 days [26] to
6 years [27]; see Table I.

TABLE I. Temporal network data sets.

Data set Size Snapshots t resolution Type Source

Conference 113 10 618 20 s Undirected [26]

Pig trade 89 745 465 1 day Directed [28]

Sexual contacts 16 730 2232 1 day Undirected [27]
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FIG. 2 (color online). Density of the accessibility graph (black
line) and distribution of shortest path durations (red line with
circles) for a network of face-to-face contacts at a conference.
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We unfold the accessibility graphs of these networks and
obtain path densities and distributions of shortest path
durations. Hereby, we treat the path density as a (improper)
cumulative distribution. The results are shown in Figs. 2–4.
In addition, we compute the causal fidelity c for each
network following Eq. (5).

Figure 2 shows results for a network of conference
attendees. Every face-to-face contact between two persons
is recorded as an undirected edge. The data set covers a
time span of 3 days, separated by time spans of no activity
(nights). The density of the accessibility graph in Fig. 2
shows clear and fast saturation at a value of � ¼ 0:9917,
indicating that after only 3 days a large part of the network
is causally connected. More than 70% of the possible
paths are traversed within only 1 day (black line). The
median of the distribution is reached in less than 6 hours.
An aggregated network representation gives a good ap-
proximation of the system, which is also reflected in the
high causal fidelity of c � 0:99 of its static representation.

Figure 3 shows the results for the network of pig trade in
Germany over a time span of 455 days. Every node in the
network is an agricultural holding and an edge is present
when a holding sells livestock animals to another one.
In contrast to the two other data sets, the pig trade network
is directed. This is reflected in relatively low values of the
path density. The shortest path lengths show a broad dis-
tribution (red). Although the temporal diameter of the
pig trade network is by far larger than the observation
period of 455 days, the distribution shows a global maxi-
mum (i.e., possesses a mode) at around 120 days. This
means that the typical spreading time scales are of the
order of 100 days. The comblike structure of the graph
reflects the time inhomogeneity of trade, which is not so
frequent on Saturdays and almost absent on Sundays. The
static representation of the network captures its features
sufficiently well (c ¼ 0:72). A similar behavior can be
expected for pig trade networks of other countries because
these systems are determined by the typical lifetime of a
livestock pig.

Figure 4 shows the distribution of shortest path durations
for a network of sexual contacts. The network reflects
physical contacts between prostitutes and their customers.
Each contact is recorded as an undirected link. Here, no
saturation of the path density is reached within the study
period, and the distribution of shortest path durations does
not show a clear maximum. The figure demonstrates that
the majority of shortest paths takes more than 2 years to
traverse. Even if time scales cannot be resolved from the
data, the observation is useful to define a minimum dura-
tion of future field observations and may be of use for the
implementation of vaccination strategies. The figure shows
that it takes at least 3 years to obtain a considerable density
of the accessibility graph. The sexual contact network is
only poorly represented by its aggregated counterpart, as
reflected by low causal fidelity of this representation
(c ¼ 0:38). A static network would significantly overesti-
mate the number of transmission paths, and the system has
to be analyzed from a temporal network perspective [27].
Our examples suggest that a primary criterion for a high
causal fidelity is that the data acquisition time should be
longer than the typical shortest path duration of the system,
which can be inferred from �ðP nÞ. An analysis of
the causal fidelity for different systematically randomized
models of the same networks is provided in the
Supplemental Material [22].
To conclude, we introduced temporal accessibility

graphs as a formalism to analyze temporal network data
in terms of causal paths. The method is the temporal
generalization of the transitive closure of a static network.
It gives information about the distribution of time scales in
the system and also provides an instrument for quantifying
the quality of their simpler, static representation. The
examples of real networks considered demonstrate the
practicability and usefulness of this approach.
We thank the SocioPatterns Collaboration [29] and Luis

E. C. Rocha for sharing data. This research was funded by
the Federal Ministry of Education and Research, Grant
No. FKZ 13N 11208.
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FIG. 4 (color online). Density of the accessibility graph (black
line) and distribution of shortest path durations (red line with
circles) for a network of sexual contacts.
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FIG. 3 (color online). Density of the accessibility graph (black
line) and distribution of shortest path durations (red line with
circles) for a network of pig trade in Germany.
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