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A competition of incommensurate symmetries occurs whenever a system is forced to conform to an

ordering that is different from the intrinsically preferred structure of the system itself. As a model system

of such a competition, we study the rivalry between the triangular ordering of hard disks and the square

symmetry induced by a periodic square substrate. By using density functional theory as well as

Monte Carlo computer simulations, we determine the full phase behavior for the case of one particle

per minimum. We observe a rhombic preordering structure preceding the hexagonal solid as a direct

consequence of the competing symmetries. Furthermore, the square-rhombic transition is reentrant with

increasing substrate interaction. Our predictions can be verified in experiments of colloids in laser fields.
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If a monolayer of particles is adsorbed on a substrate
with an incompatible symmetry, there is a competition
between the phase that the adsorbed particle would form
without substrate and the phase that reflects the symmetry
of the substrate. As already described by Landau [1], there
must be a first order transition between phases with incom-
patible symmetries. Phase transitions induced by substrates
are widely studied, for example, on substrates with a one
dimensional commensurate structure [2], which enhances
the triangular order that is present without substrate. On
other substrates with more complex periodic or even aperi-
odic symmetry, new phases have been observed [3–11].
For small interactions between the particles and the sub-
strate, the phase preferred by the particles in the absence of
a substrate strength prevails, while the phase preferred by
the substrate is enforced for a strong substrate strength. In
many systems, additional phases at intermediate substrate
strength have been observed, for example, for nanopar-
ticles or micron-sized colloids [3,6,9,10], for vortices in
type-II superconductors [12,13], for adsorbed atoms
(cf., e.g., Refs. [7,14,15]) or molecules (for a recent review,
see Ref. [16]). An intermediate phase also has been pre-
dicted from defect-mediated melting theory [17].

In this Letter, we study the competition of incompatible
symmetries in a minimal model system. We consider hard
disks adsorbed on a square substrate for a density that is
chosen such that there is always one disk per minimum of
the substrate. A schematic depiction of the model is shown
in Fig. 1. Without the substrate potential, a system of
hard disks at any temperature forms a triangular solid
(with quasilong range order) [18] if the density is suffi-
ciently high. Evidently, the disks prefer triangular order
which is incompatible to the square symmetry of the sub-
strate. By using a fundamental-measure density functional
theory (DFT) as well as Monte Carlo simulations, we deter-
mine the phase behavior depending on the packing fraction
and the strength of the particle-substrate interactions.

At low packing fraction (large wavelength of the external
potential), the system is in a modulated square fluid phase.
When increasing the packing fraction, we observe a rhom-
bic preordering as a consequence of the incompatibility of
the symmetries prior to the first order transition into the
triangular phase at high packing fraction. In the rhombic
ordering, the particles are still bound to the minima of the
square substrate. However, every second row or every
second column of particles is shifted in one direction,
while the other rows or columns are displaced in the
opposite direction. In this way, the rhombic structure
allows for a larger mean distance between the particles
acting as a precursor to the hexagonal solid, where the
distance between nearest neighbors is maximal. Using the
mean-field type DFT, we find a second-order square-fluid
to rhombic transition, while with Monte Carlo simulations
there is no first or second order transition but a continuous
crossover from the modulated square symmetry to rhombic
ordering.
Our results indicate a more general scenario in which

two competing incommensurate structures lead to the

FIG. 1 (color online). Schematic view of the square substrate
potential of lattice constant a. The disks have diameter � and on
average there is only one particle located at each minimum of the
substrate.

PRL 110, 118301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 MARCH 2013

0031-9007=13=110(11)=118301(5) 118301-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.118301


emergence of a preordering structure which inherits
properties from both competing phases. As a further result,
a reentrant square-rhombic transition or crossover is found
for increasing strength of the substrate interaction. Our
model system can be realized experimentally by sterically
stabilized colloids on a flat surface or at an air-water
interface exposed to a laser interference pattern with
square symmetry, similar to previous experiments with
colloidal particles where laser fields were used to model
an external potential [2–4,6,10,19]. The limit of strong
square substrates has already been studied [3,5,11,20],
usually with the emphasis on the case of multiple colloids
per minimum [3,5,6,11].

In our model, the hard disks have a diameter � which
serves as length scale. The thermal energy kBT is the
energy scale. The external potential is

VextðrÞ ¼ V0
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with the amplitude V0, the four reciprocal lattice vectors
fkjg ¼ fð�1;�1Þ �ag, and the lattice constant a of the

substrate square lattice. We study the system at unit filling;
i.e., there is one particle per square; see again Fig. 1. Unit
filling implies that the areal number density is 1=a2 which
immediately translates into the dimensionless area fraction
� ¼ ��2=4a2 of the system.

In the following, we shall first present results for the
phase diagram from fundamental-measure DFT [21–24] in
the two-dimensional plane spanned by the area packing
fraction � and the substrate potential strength V0=kBT.
Subsequently, we describe our Monte Carlo simulation
results.

In DFT [25], a grand canonical free energy functional
�ðT;�; A; ½�ðrÞ�Þ is minimized with respect to the density
profile �ðrÞ at fixed temperature T, chemical potential
�, and given area of the system A. The functional
�ðT;�; A; ½�ðrÞ�Þ is conveniently split into three parts,

�½�ðrÞ� ¼ F id½�ðrÞ� þF exc½�ðrÞ� þF ext½�ðrÞ�; (2)

where F id½�ðrÞ� ¼ kBT
R
dr�ðrÞ [ lnð�2�ðrÞÞ � 1] is the

exactly known ideal gas functional which includes the
(irrelevant) thermal wavelength �. F exc½�ðrÞ� denotes
the nontrivial excess free energy functional resulting
from the interaction between the particles for which we
adopt the recently developed fundamental-measure theory
for hard disks [24]. The third term describes the coupling to
the external potential of Eq. (1) and reads

F ext½�ðrÞ� ¼
Z

dr�ðrÞ½VextðrÞ ���: (3)

We use a Picard iteration [23] scheme to minimize the
grand-canonical free energy � freely on a fine grid. The
chemical potential � is used as a Lagrangian multiplier
so that the average number of particles (i.e., the packing

fraction�) in the system is fixed.We analyze the symmetry
in the minimizing equilibrium density profile and obtain
the phase diagram shown in Fig. 2. For vanishing external
potential V0 ¼ 0, we recover the bulk hard disk freezing
transition from a disordered fluid to a hexagonal crystal.
The freezing transition is first order in this approximation
of the DFT [24]. Increasing the amplitude of the external
potential V0, particles in the fluid phase arrange on the
square substrate and thus form a modulated fluid phase, see
the density profile in Fig. 2, where black crosses display the
potential minima. Consequently, the phase transition shifts
to higher packing fractions, as the external potential sup-
presses the triangular structure. For reduced amplitudes
higher than V0=kBT ¼ 0:82, a rhombic ordering of
particles occurs. The rhombic structure can be thought of
as a shift of even numbered rows of particles away from
the lattice sites of the square lattice in one of the four
possible directions, while odd numbered rows are shifted in
the opposite direction. Thereby, the square to rhombic
transition can be, in principle, continuous, similar to a
Martensitic transition [26]. In fact, our DFT studies show
that the square-to-rhombic fluid transition is second order
while the crystallization of either modulated fluid or

FIG. 2 (color online). (a) Phase diagram for hard disks on a
square substrate showing the three different phases, square
modulated fluid, rhombic, and triangular crystal. The dashed
line indicates the second order and the solid line the first order
phase transition, where the dot denotes the triple point. Density
contour plots of the three phases are included obtained for a fixed
external potential with V0=kBT ¼ 1 and packing fractions (a’)
� ¼ 0:7069, [(a’’), (b)] � ¼ 0:7257, and (c) � ¼ 0:7383. The
stars indicate the simulation parameters for Fig. 3.
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rhombic phase into the triangular lattice is first order due
to the incompatibility of the two structures. The resulting
density contour plot of the triangular crystal (see Fig. 2)
shows a distorted hexagonal crystal. The reentrant behav-
ior can be understood by considering the interplay between
entropy and the substrate potential: at low interactions with
the substrate, the fluid is nearly unperturbed, except for
a density modulation prescribed by VextðrÞ. When the sub-
strate interaction is not too strong, the entropy, which is
mainly limited by interactions with the neighbors, can be
increased by forming the rhombic structure, which has a
larger mean interparticle distance. At even higher V0, the
fluctuations are suppressed to a point where the particles
hardly interact with each other, such that they simply con-
form again with the structure enforced by the substrate.

In our Monte Carlo computer simulations, we fixed the
number of particles N, area A ¼ Na2, and temperature T.
Typical configurations for three V0 values, along with the
corresponding scattering function or structure factor SðkÞ
[27], are shown in Fig. 3 for a packing fraction � ¼ 0:69,
well below the bulk phase transition. For a weak substrate
potential, the system forms small clusters with hexagonal
order, which are also found in the fluid for V0 ¼ 0. The
field aligns the clusters, such that rows of particles occupy
rows of minima in the substrate potential in the x and y
directions. The resulting scattering profile has 12-fold
symmetry as predicted by Nelson [17], which is the result
of a superposition of two scattering profiles each exhibiting
hexagonal local order, where the second profile is rotated
by 90� compared to the first. For V0=kBT ¼ 2, the structure
is completely different: the competition between the sub-
strate potential, that is minimized by a square structure, and
the free volume that is larger for triangular local structure,
results in a locally rhombic structure. Formation of equilib-
rium rhombic clusters with their rows along the two differ-
ent directions causes the rhombic order to be finite ranged.
The shifted rows cause large peaks at kR ¼ ð2�=aÞ (1, 1=2)
in between the main peaks. Finally, for large V0=kBT ¼ 4,
the particles are forced to be near one of the minima of
the substrate potential, which precludes rhombic ordering.
Comparable results from DFT can be found in the
Supplemental Material [27].

It is clear from the scattering profile that the peak height
at kR is a good order parameter for rhombic ordering.
We show SðkRÞ as a function of V0 for different system
sizes in Fig. 4(a). For every system size considerably larger
than the largest rhombic cluster size in the system (i.e.,
N > 322), the scattering function has no finite size depen-
dence, an unambiguous sign of exponential decay of the
rhombic positional order with distance. In the inset of
Fig. 4(a), we show the corresponding peak height S0ðkRÞ
as resulting from a Fourier analysis of the density field in
DFT; for details see Ref. [27]. It is nonzero in the rhombic
phase, because the rhombic positional order is long ranged
in DFT. We see that the rhombic order, measured by SðkRÞ,

FIG. 3 (color online). Typical configurations from
Monte Carlo simulations for a system with 1282 particles
(only a small section of the system is shown) and the corre-
sponding scattering function (insets) for a packing fraction
� ¼ 0:69 and external field strength (a) V0=kBT ¼ 1, (b) 2,
and (c) 4 (as indicated in Fig. 2). The particles are colored
according to their local structure: black denotes no rhombic
order, orange and blue denote perfect rhombic order with rows
along the x and y directions, respectively. The scattering peak
at kR ¼ ð2�=aÞ (1, 1=2) due to the rhombic preordering is
indicated in the inset of (b).
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in the simulations is much larger around the area where the
DFT predicts a stable rhombic phase, so we would expect
to find phase transitions where the SðkRÞ changes most
sharply in the simulations. In Fig. 4(b), we show the
average potential energy, which would show a discontinu-
ity at a first order phase transition, and the mean squared
energy fluctuations divided by the number of particles N,
which would show a peak that increases with the system
size at a second order phase transition. Neither quantities
show an indication of a phase transition, although the
variance of the energy shows system size-independent
peaks around the V0 values, where the rhombic order

sharply changes. Clearly, we have found a very unusual
transition, which has a clear structural signature, but no
thermodynamic footprint. Furthermore, as mentioned
before, the Monte Carlo simulations confirm the reentrant
behavior found in the DFT.
In conclusion, we have employed DFT calculations to

study the phase behavior of hard disks on a square substrate
and found rhombic preordering which was confirmed in
our Monte Carlo simulations. Therefore, we have shown
that DFT can be successfully applied to freezing on incom-
mensurate structures. Only the order of the phase transition
between the square to rhombic transition was underesti-
mated by the mean-fieldlike DFT.
Our results show how freezing occurs on a substrate with

a structure that is incompatible with the symmetry of the
bulk crystal. We found a new intermediate ordering that is
a compromise between the two symmetries. The model
that we studied applies to the competition between square
and hexagonal structures where the new emerging inter-
mediate phase is rhombic, but we anticipate that this is a
general scenario. Hence, we expect a comparable phase
behavior for other competing symmetries, as shown for a
rectangular substrate in the Supplemental Material [27].
However, it is not immediately self-evident how a possible
preordering, which corresponds to the rhombic phase on
the square lattice, might look on substrates with other
symmetries. Therefore, an interesting question arising
from our results is whether the intermediate phases
reported for substrates with incompatible symmetries,
e.g., the phases with 20-fold bond orientational order [9]
or the Archimedean-like tiling phases [10] on substrates
with decagonal quasicrystalline symmetry, are reminiscent
of a preordering before a first order transition between
completely incompatible symmetries. Furthermore, it will
be interesting to explore other model systems where the
incompatibility of different symmetries is induced by the
boundaries [28–30] or is due to an incommensurate filling
fraction of the substrate minima (see, e.g., Refs. [3,6]), and
to study the modification of friction due to the different
phases [31].
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