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We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a

substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically

stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension

d ¼ 2 and long ranged in d ¼ 3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in

our simplest model in d ¼ 2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and

that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in

these systems.
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Equilibrium condensed matter physics owes its richness
largely to the profusion and complexity of phases of equi-
librium matter: crystals, nematics [1], partially translation-
ally ordered systems like smectics A [1] and discotics [1],
and hybrids like the hexatic B [2], to name a few. Beyond
the equilibrium domain, in particular, in systems of ‘‘active
particles’’ [3], the number of possibilities increases [4], but
very few of these have actually been studied; nearly all past
work has focused on active particles in a state of orienta-
tional order [4–6]. Thus, in understanding active matter, we
are roughly where we would be in understanding equilib-
rium systems if we knew only the nematic liquid crystal.

The few active matter phases that have been thoroughly
studied exhibit very different fluctuation [7–11] and flow
[12–17] behavior from their equilibrium counterparts.
They can order in spatial dimensions in which their equi-
librium analogs cannot [7] and, paradoxically, they exhibit
far larger density fluctuations [7–11] than any equilibrium
system. Do translationally ordered active systems [14,18]
exhibit similar phenomena? This Letter provides a partial
answer for active systems with spontaneously broken
translation invariance in one direction—active smectics.
Specifically, we consider apolar systems of particles with
their mean orientation axis along the layer normal (i.e.,
smectics A [1]), with active stresses [15] pulling in or
pushing out, i.e., contractile or extensile, along that axis.

This work is a major step in the exploration of the
varieties of active order: It probes whether dramatic differ-
ences between active and equilibrium liquid crystals are
unique to orientational order; it is timely because slight
modifications of models of ordering in biological systems
yield layered phases [19]; and, finally and most importantly,
it is relevant to the many observed striped nonequilibrium
steady states, including the Rayleigh-Bénard problem
[20,21], systems of shaken rods [22], dense collections of

rod-shaped bacteria [23] or biological macromolecules, and
chemical reaction-diffusion systems [24].
In this Letter, we report our results for two of the many

possible models with this spatial symmetry; results for
three others will be presented elsewhere [25]. Our first
and simplest model treats the dynamics of stripes, ignoring
all conserved quantities, and applies to convection roll
patterns [21,26] and spontaneously layered phases of self-
driven apolar entities, reproducing or dying while in motion
[27], on a substrate which serves as a momentum sink.
The second is bulk layered systems in a background fluid
with both number and momentum conservation, which we
treat in both the Stokesian (i.e., viscosity-dominated) limit
and at large length scales where acceleration dominates
over viscosity.
The following is our principal result: Over a finite range

of parameter space, apolar active smectic order is dynami-
cally stable and long ranged in the presence of noise in
dimension d ¼ 3 and quasilong ranged in d ¼ 2, in con-
trast to equilibrium smectics [1,28]. The dynamical stabil-
ity of Stokesian apolar active smectics is in sharp contrast
to the generic instability of bulk active orientationally
ordered phases in that limit [12]. These conclusions about
stability reinforce and extend the findings of Ramaswamy
and Simha [18]. Our theory therefore offers the first known
examples of smectic long-range order in a physically
accessible dimension, a two-dimensional smectic that is
stable against dislocations, and a mechanically stable
Stokesian ordered phase of active matter, with important
implications for experiments. We show further that, unlike
their orientationally ordered counterparts [4,5,7,10], apolar
active smectics have finite concentration fluctuations, and
that bulk apolar active smectics have a nonzero ‘‘second-
sound’’ mode in the plane of the layers, in contrast to
equilibrium smectics [1]. Finally, we find that apolar active
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smectics with no conservation laws undergo a transition to
an active nematic as the concentration of active particles is
varied. In two dimensions, ‘‘reentrance’’ [29] necessarily
occurs: The active smectic phase is flanked at large and at
small concentrations by the active nematic. Both transi-
tions are in the Kosterlitz-Thouless universality class [30].

We begin with the simplest case, dealt with briefly in
Ref. [18]: active elements whose number and momentum
are not conserved, spontaneously condensed into a unidir-
ectional fore-aft symmetric periodic structure, i.e., a smec-
tic A, with mean layer normal n̂0 along ẑ (Fig. 1). This
model applies to Rayleigh-Bénard stripes in a thin fluid
layer [20,21]. The only hydrodynamic field in this case is
the layer displacement u, whose long-wavelength dynam-
ics, retaining terms permitted by symmetry [31], to leading
order in gradients and u, reads

@tu ¼ ~B@2zuþDr2
?u� ~Kr4

?uþ fu; (1)

where fu is a Gaussian, zero-mean spatiotemporally white
noise with variance 2�. The term with coefficientD [32] is
forbidden by rotation invariance of the free energy in an
equilibrium smectic without an aligning field but permitted
here because rotation invariance at the level of the equation
of motion, which is all one can demand in an active system,
does not rule it out [34]. It implies that the local vectorial
asymmetry of a curved layer leads to directed motion, as
this is a driven system.

Symmetry does not fix the sign ofD. A negativeD leads
to an undulation instability [35]. The spatial Fourier com-
ponents uðq; tÞ for small wave vectors q ¼ ðq?; qzÞ in
the stable steady state of (1) for positive D can readily be
shown to have variance hjuðq; tÞj2i ¼ �=ð ~Bq2z þDq2?Þ.
The real-space variance h½uðr; tÞ�2i ¼ R

qhjuðq; tÞj2i is

thus finite in d ¼ 3, corresponding to long-range smectic
order, and � logL in d ¼ 2 for system size L, correspond-
ing to quasi-long-range order [18]. This establishes our
principal result for the simplest case.

Ignoring the subdominant ~K term, Eq. (1), suitably
rescaled, also describes the relaxational dynamics of an
equilibrium XY model with a stiffness/temperature ratio

� � ~Bð3�dÞ=2Dðd�1Þ=2a2=ð2�2�Þ. It then follows from
well-known results on the d ¼ 2 XY model [30] that
topological defects (i.e., dislocations) in an active smectic
in dimension d ¼ 2 unbind, driving the system into
the active nematic phase, when � ¼ 2=�, i.e., when

2�2�=a2ð ~BDÞ1=2 ¼ �=2. This locus is plotted in the
�-D plane in Fig. 2(a).
We expect that the purely active quantityD / c0, where c0

is the concentration of active particles, and that the
noise strength � gets an active contribution / c0, and a
c0-independent thermal part / kBT. Hence, varying c0
maps out a straight line with positive intercept on the � axis
in the �-D plane, as illustrated in Fig. 2(a). As is clear from
that figure, this experimental locus can only enter the active
smectic region by crossing the active smectic to active ne-
matic phase boundary twice.This implies our conclusion that
reentrance is inevitable in two dimensions for these systems.
In d ¼ 3, as well, the transition to a nematic for this

model is in the XY universality class. However, equilib-
rium smectic order at D ¼ 0 exists at low enough T, so the
phase boundary ends at �c > 0 on the � axis, but its slope
atD ¼ 0 diverges. To see this, note that, when approaching
the transition from D ¼ 0, D becomes significant in (1)

when D=�2
? � ~K=�4

?, i.e., �? �
ffiffiffiffiffiffiffiffiffiffiffi
~K=D

p
, where �? /

j���cj��? is the equilibrium in-plane correlation length
for smectic order [36] at D ¼ 0, implying a positive shift

CD1=2�? in �’s critical value, where C is a constant.
Theory [36] and experiment [37] find 1=2�? < 1, so the
phase boundary in Fig. 2(b) has infinite slope as D ! 0, as
illustrated in the figure. That �cðD ¼ 0Þ> 0 means that
reentrance is not inevitable; see locus (3) in Fig. 2(b).
We next consider active smectics with a constant particle

number, suspended in an incompressible fluid. The con-
served momentum density g, active-particle concentration
c, and broken symmetry displacement field u are now the
slowvariables. The particleþ fluidmass density� ¼ �0 ¼
constant andr � v ¼ 0, where v � g=� is the velocity field.

u
n

0

z

n

FIG. 1. Schematic representation of a smectic A. The solid and
dotted lines represent layers in the reference and a perturbed
state, respectively. The mean layer normal n̂0 and local layer
normal n̂, along with the ẑ and? axes, are shown, as is the layer
displacement field u specifying the displacement of perturbed
layers along ẑ.
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FIG. 2 (color online). Phase diagram of active smectics, in the
activity D noise strength � plane, for (a) d ¼ 2 and (b) d ¼ 3.
The straight lines indicate approximate loci mapped out in this
parameter space by varying the concentration c0 of active
particles with other parameters fixed.
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Conservation of total momentum reads @tg ¼ �r � �,
with linearized stress tensor

� ¼ pI� �ðrvþ rvTÞ þ �ðelÞ þ �a þ �N; (2)

with p the fluid pressure, � the viscosity tensor, and the

elastic force density�r � �ðelÞ ¼ �n�F=�u, with

F ¼ 1

2

Z
ddx½Bð@zuÞ2 þ Kðr2

?uÞ2 þ Að�cÞ2

þ 2C�c@zu�: (3)

Here, B and K are the layer compression and bend moduli,
respectively; A is the osmotic modulus; and C is a cross
coupling. The active stress [5,12] �a ¼ �Wcn̂ n̂ , where
n̂ � ðẑ� ruÞ=jẑ� ruj is the local normal to the smectic
layers; negative and positive activity W per particle corre-
spond, respectively, to extensile and contractile stresses;
and �N is noise.

The resulting equation of motion for v, linearized in v, u,
and �c ¼ c� c0, with c0 the mean concentration, reads

�0@tv ¼ �rpþ ẑ½B@2zu� Kr4
?uþ ðCþWÞ@z�c�

�Wc0ðẑr2
?uþ @zr?uÞ þ r � ð�rvÞ þ fv; (4)

where fv ¼ r � �N is a momentum-conserving noise and
h�N

ijð0; 0Þ�N
klðr; tÞi ¼ 2�ijkl�ðrÞ�ðtÞ. For simplicity, and

free from fluctuation-dissipation constraints [38], we will
take �ijkl ¼ �vð�ik�jl þ �il�jkÞ and �ijkl ¼ ��jk�il. The

linearized hydrodynamic equation of motion for u is

@tu¼vzþ ~B@2zuþDr2
?u� ~Kr4

?uþ ~C@z�cþfu; (5)

where the noise fu has statistics as in (1) [39].
Number conservation implies that @tc ¼ �r � Jc.

Gradient expanding the current J subject to the symmetry
constraints (rotational and translational invariance) gives

Jc ¼ �ẑ½ðAz �WcÞ@z�cþWcc0r2
?uþ Czz@

2
zu�

� r?½A?�cþ ðC?z þWcc0Þ@zu� þ fc; (6)

where the Gaussian noise fc ¼ ðfc
?; f

c
z Þ has variance 2�c

?
and 2�c

z transverse to and along z, respectively. In (6), we
have included an active current [9] Wcr � ðcn̂ n̂Þ, where
Wc is a phenomenological coefficient. In an equilibrium
two-component smectic, the constraints Wc ¼ 0 and
C?z=Czz ¼ A?=Az ¼ �c

?=�
c
z would apply. For simplicity,

we take �c
? ¼ �c

z � �c, C?z ¼ Czz ¼ E, and A? ¼
Az � G.

We solve (4) in the Stokesian limit �0@tv � �r2v and
insert the resulting v into (5). The spatial Fourier trans-
forms of � � �@zu and �c obey

@t�q ¼ �Mqf½Bq2z þWc0ðq2z � q2?Þ þ Kq4?��q

� ðCþWÞq2z�cqg þ ½@t�q�P
� iqz

�
fuq þ

Pzj;qf
v
j;q

�q2

�
; (7)

@t�cq ¼ ðEq2 þ 2Wcc0q
2
?Þ�q � ðGq2 �Wcq2zÞ�cq

� iq � fc
q; (8)

whereMq � q2?=�q
4,Pzj;q ¼ �zj � qzqj=q

2, and ½@t�q�P
summarizes the ‘‘permeative’’ ~B, ~K, ~C, andD terms from (5),
which are of higher order in wave number than those shown
explicitly in (7).
Suppose B> CE=D ¼ C2=A, so that when activity

W ¼ 0 the smectic state is stable. Let jWj>C> 0; a
similar analysis holds for C< 0. At small q, where
½@t�q�P is negligible, it is clear from (7) that negative

(i.e., extensile) W can lead to an instability with q along
z, i.e., a modulation in layer spacing. However, the
layer compression modulus B always stabilizes this when
ðB� jWjc0Þ> 0. Thus, the system is stable for small
enough jWj, establishing one of our main results.
For contractile active stresses W > 0, we see from (7)

and (8) that the most unstable modes have q in the ?
direction, in which neither the layer compression elasticity
nor the coupling to the concentration act. Hence, the
instability threshold for W vanishes in the limit of large
system size, as in Refs. [12,13]. The instability causes
splay and self-generated flow, as in active nematics
[12,13]. For smectics, this is a spontaneous version of
the Helfrich-Hurault [1,35] undulation instability.
The instability that arises in the extensile (W < 0) case

when jWj> B is interesting. Equations (7) and (8) have the
same form as the linear part of the Fitzhugh-Nagumo
[40,41] equation, which exhibits sustained oscillations
under rather general conditions. We speculate that such
oscillations could also occur here, i.e., a breathing smectic.
We will explore this in future work [25].
We now turn to the statistics of fluctuations in the bulk

Stokesian limit. It is clear by inspection that (7) and (8) will
have a mode each with frequency �q0 and q2 at small q,
corresponding primarily to stress relaxation and concen-
tration, respectively. We use the clear separation of these
time scales to simplify their evaluation from (7) and (8):

For q � q> � B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�EðCþWÞp

, �c can be shown to be
negligible in (7) for the purpose of evaluating the variance
of u, and �q in (8) can be eliminated in favor of �cq by

treating �q as fast in (7). On the other hand, the Stokesian

approximation �0@tv � �q2v can be shown to hold if and
only if B=� � �q2, which requires q � q< � ffiffiffiffiffiffiffiffiffi

B�0

p
=�.

To estimate parameters to see when the ratio q>=q< ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�=�0EðCþWÞp � 1 is large, we argue that an order-

unity splay of the smectic layers, i.e., j@zr?uj � 1=a,
should give a particle current �Oðc0v0Þ, where a is the
layer spacing and v0 is the typical propulsion speed. This
yields E� c0v0a, where a is the smectic layer spacing,
assumed comparable to the particle size. Estimating in
addition C�W � B=c0, we find

q>=q< �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�0v0a

q
¼ 1=

ffiffiffiffiffiffi
Re

p
; (9)
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where Re � �0v0a=� is the Reynolds number of an indi-
vidual particle. Thus, we see that, provided individual
swimmers are in the low Reynolds number limit, our two
approximations are valid over a large range q< � q �
q> and can be brought to bear on (7) and (8). The dis-
placement variance is thereby found to be

hjuðq; tÞj2i ¼ �v

�½Bq2z þWc0ðq2z � q2?Þ�
: (10)

This scales like 1=q2 for all directions of q, precisely as in
the simplest model considered earlier. Hence, like that
model, the Stokesian apolar active smectic also exhibits
smectic translational order that is long ranged in the pres-
ence of noise in dimension d ¼ 3 and quasilong ranged in
d ¼ 2. The �c correlator takes the form

hj�cðq; tÞj2i

¼ �cq2

Gq2 �Wcq2z � ðEq2 þ 2Wcc0q
2
?ÞðCþWÞq2z=Gq

;

(11)

where Gq � Bq2z þWc0ðq2z � q2?Þ.
As is clear from our discussion above, at sufficiently

long wavelengths (i.e., for q < q<), the Stokesian approxi-
mation must break down. We must then take the accelera-
tion (@tv) into account in Eq. (4). The complete
hydrodynamics in this case will be presented elsewhere
[25]; here, we will limit ourselves to the two most impor-
tant results: that the second-sound speed is finite even
for propagation within the plane of the smectic layers
(in which direction this speed vanishes in equilibrium
smectics [1]) and that the smectic translational order is
long ranged in the presence of noise in dimension d ¼ 3
and quasilong ranged in d ¼ 2, in contrast to equilibrium
smectics, which have only quasi-long-ranged order in
d ¼ 3 [1] and short-ranged order in d ¼ 2 [28].

Fourier transforming (4)–(6) in space and time and
defining 	q to be the angle between q and the z axis yields,

at the longest wavelengths, a pair of sound modes with
frequency !ðqÞ ¼ �cð	qÞq� i�ð	qÞq2=2, with direction-
dependent second-sound speed and damping coefficient

cð	qÞ � j sinð	qÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½BþWc0�cos2ð	qÞ �Wc0sin

2ð	qÞ
�0

s
;

(12)

�ð	qÞ �
�
�

�0

þ ~Bcos2ð	qÞ þDsin2ð	qÞ
�
; (13)

respectively. Note that the second-sound speed does not
vanish for propagation parallel to the layers (	q ¼ �=2);

instead, it goes to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wc0=�

p
(recall that W < 0 in the

stable regime). Note also that this sound speed would

vanish in the absence of activity W ¼ 0, recovering the
well-known [1] result for an equilibrium smectic.
With an extension of the same algebra, we find that the

variances of u and �c are

hjuðq;tÞj2i

¼½��1
0 �vq

2þ�GqþðCþWÞ2q2zð�c
?q

2
?þ�c

zq
2
zÞ=Gq�

Gq�ð	qÞq2þðCþWÞq2zCq

and

hj�cðq; tÞj2i

¼ ð�c
?q

2
? þ �c

zq
2
zÞ

ðAz �WcÞq2z þ A?q2? � ðCþWÞq2zCq=Gq

;

where Gq is defined after (11) and Cq � Czzq
2
z þ ðC?z þ

2Wcc0Þq2?. Since once again the variance hjuðq; tÞj2i /
1=q2 for all directions of q, we again find that translational
order is long ranged in d ¼ 3 and quasilong ranged in
d ¼ 2, while the fact that the variance hj�cðq; tÞj2i is finite
as q ! 0 for all directions of q again implies that there are
no giant number fluctuations.
In conclusion, we have constructed the dynamical equa-

tions for active smectics, both in bulk suspensions and
in confined systems in contact with a momentum sink.
Our theory is generic, applicable to any driven system
with spontaneous stripe order and appropriate conservation
laws. We show, extending Ref. [18], that noisy active smec-
tic order is long ranged in dimension d ¼ 3 and quasilong
ranged in d ¼ 2 for all dynamical regimes and that active
smectic suspensions have a nonzero second-sound speed
parallel to the layers. For d ¼ 2, we predict a Kosterlitz-
Thouless transition from active nematic to active smectic,
with a reentrant nematic at low concentration. We show that
smectic elasticity suppresses the giant number fluctuations
and extensile instabilities that occur in active nematics.
Our results should apply to a wide range of active sys-

tems, including horizontal layers of granular matter agitated
vertically or fluids heated from below. Extensions to active
mesophases in agitated two-dimensional electron gases
[42], where Coulomb and magnetic-field effects enter, will
be discussed elsewhere [25]. We look forward to detailed
experimental tests of our predictions.
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