
Topological and Dynamical Complexity of Random Neural Networks

Gilles Wainrib1,* and Jonathan Touboul2,3,†
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Random neural networks are dynamical descriptions of randomly interconnected neural units. These

show a phase transition to chaos as a disorder parameter is increased. The microscopic mechanisms

underlying this phase transition are unknown and, similar to spin glasses, shall be fundamentally related

to the behavior of the system. In this Letter, we investigate the explosion of complexity arising near

that phase transition. We show that the mean number of equilibria undergoes a sharp transition from one

equilibrium to a very large number scaling exponentially with the dimension on the system. Near

criticality, we compute the exponential rate of divergence, called topological complexity. Strikingly,

we show that it behaves exactly as the maximal Lyapunov exponent, a classical measure of dynamical

complexity. This relationship unravels a microscopic mechanism leading to chaos which we further

demonstrate on a simpler disordered system, suggesting a deep and underexplored link between

topological and dynamical complexity.

DOI: 10.1103/PhysRevLett.110.118101 PACS numbers: 87.18.Tt, 05.10.�a, 87.18.Nq, 87.19.ll

Heterogeneity of interconnections is a crucial property
to understand the behavior of realistic networks that arise
in the modeling of physical, biological, or social complex
systems. Among these, a paramount example is given by
neuronal networks of the brain. In these systems, synaptic
connections display characteristic disorder properties [1,2]
resulting from development and learning. Taking into
account this heterogeneity seems now essential, as experi-
mental studies of neuronal tissues have shown that the
degree of disorder in the connections significantly impacts
the input-output function, rhythmicity, and synchrony,
effects that can be related to transitions between physi-
ological and pathological behaviors [3–5]. As an example,
Aradi and Soltesz [3] have shown that rats subject to febrile
seizure present the same average synaptic properties but
increased variance.

These properties are reminiscent of disordered physical
systems such as spin glasses. The relationship between dis-
order and qualitative behaviors has been thoroughly studied
within theoretical frameworks such as the Sherrington-
Kirkpatrick model [6] describing the behavior of binary
variables interacting through a random connectivity matrix.
In these models, estimating the number of metastable states,
deemed to be deeply related to the transition to chaos,
remains an important endeavor [7]. In the context of nervous
system modeling, random neural networks [8,9] constitute a
prominent class of models, which describe the evolution of
the activity of a neuron i in ann-neurons network through the
randomly coupled system of ordinary differential equations:

_xi ¼ �xi þ
Xn
j¼1

JijSðxjÞ; (1)

where Jij are independent centered Gaussian random varia-

bles of variance�2=n representing the synaptic connectivity
coefficients between neuron i and j [10] and S is an odd
sigmoid function with maximal unit slope at the origin
[S0ðxÞ � S0ð0Þ ¼ 1] representing the synaptic nonlinearity.
The behavior of system (1) has been analyzed in the

asymptotic regime of infinite population size n ! 1 [8]
and displays a phase transition for a critical value of the
disorder at � ¼ 1: For �< 1 all the trajectories are
attracted to the trivial equilibrium x ¼ 0, and for �> 1
the trajectories have chaotic dynamics. This generic phase
transition has been numerically observed in a number of
situations in more realistic models involving multiple pop-
ulations and excitable dynamics [11]. That phase transition
and the chaotic regime beyond the edge of chaos appear
particularly relevant to understanding the computational
capabilities of neuronal networks. In particular, informa-
tion processing capacity was characterized as optimal at
the edge of criticality [12,13], and such random neural
networks are in particular used in recent machine learning
algorithms [14]. Moreover, the question of criticality has
been widely debated in the theoretical neuroscience com-
munity and beyond [15–17], and it seems that, through a
number of different mechanisms among which is plasticity
of synapses, networks may tend to be naturally poised near
criticality. In the random neural network, the microscopic
mechanisms underpinning this phase transition remain
unclear. It is hence of great interest to dissect precisely
the behavior of such systems at the edge of chaos.
Characterizing the topological modifications of the

phase space arising at the edge of chaos is precisely the
question we shall address in this Letter. More precisely,
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we will estimate the averaged number of equilibria in the
random neural network (1). To this end, we will develop
upon the theories of random matrices [18], random geome-
try, and Gaussian fields [19].

We denote by Anð�Þ the random number of equilibria
[depending on the realization of the matrix J ¼ ðJijÞ].
These are the solutions of the system:

xi ¼
Xn
j¼1

JijSðxjÞ: (2)

For �< 1, consistent with the mean-field analysis, we
first show that E½Anð�Þ� ! 1 when n ! 1. The proof
proceeds by showing that the system is contracting on
the whole space Rn. To this purpose, one needs to charac-
terize the eigenvalues of the random Jacobian matrix�Iþ
J ��ðS0ðxÞÞ, where I is the identity matrix and �ðS0ðxÞÞ is
the diagonal matrix with elements S0ðxiÞ. The matrix
J ��ðS0ðxÞÞ is a centered Gaussian matrix with indepen-
dent components, and each column has a distinct standard
deviation given by �2S0ðxiÞ2=n. Rajan and Abbott [20]
provide the system of equations satisfied by the squared
modulus of the eigenvalues of such random matrices and
solve these when considering only two different variances.
Their methodology readily generalizes to our problem, and
elementary algebraic manipulations (see Refs. [21,22])
show that the spectral density has support in the disk of

radius �2

n

P
n
i¼1 S

0ðxiÞ2 for large n. In our case, S0ðxÞ � 1,

and hence all eigenvalues of the matrix �Iþ J ��ðS0ðxÞÞ
have a negative real part in the limit n ! 1. This implies
global contraction of the dynamics, ensuring the fact that
the trivial equilibrium x ¼ 0 is the unique equilibrium for
�< 1 (Banach fixed point theorem) and its global stability.

For �> 1 the situation is more complex. Similar to the
phase transition in spin glasses, the behavior of E½Anð�Þ� is
likely to scale as exp½nCð�Þ�, where Cð�Þ is the topologi-
cal complexity. Our starting point is to observe that the
fixed point equations (2) can be viewed as zero crossings of
a Gaussian field indexed by x 2 Rn. Moreover, regularity
and measurability of that Gaussian field ensure that the
Kac-Rice [23] formula can be applied in order to estimate
the number of solutions:

E½Anð�Þ� ¼
Z
Rn

dxE½j det½�Iþ J � �ðS0ðxÞÞ�j
� �0ð� xþ J � SðxÞÞ�:

Recent studies [26–28] have used that formula to estimate
the mean number of critical points in random energy
landscapes arising from Hamiltonian systems with strong
symmetry properties (spin glass with spherical symmetry
in Ref. [28] and translation invariant potential in
Refs. [26,27]). In our case, the situation is substantially
different: (i) There is no underlying energy landscape since
the system (1) is not Hamiltonian, and (ii) symmetry prop-
erties of the vector field do not enable the same kind of
reduction method developed in Refs. [26–28]. A major

technical difficulty is the fact that, because of the lack of
symmetry in our system, one needs to deal with the deter-
minant of random matrices with columns of nonidentical
variances, for which the spectral density is unknown.
However, near criticality, for � ¼ 1þ " with 0<"�1,

we can obtain a first-order estimate of the number of
equilibria taking advantage of the fact that all equilibria
remain close to x ¼ 0. More precisely, we first show that
with an arbitrarily high probability 1� �ðn; "Þ with
�ðn; "Þ ! 0 as n ! 1, all equilibria belong to a ball
B�ð"Þ centered at x ¼ 0 of radius �ð"Þ which tends to 0

as " ! 0. This is a consequence of the spectral analysis of
the random matrix �Iþ J ��ðS0ðxÞÞ, whose eigenvalues
all have negative real parts outside of B�ð"Þ for large n.

The property that fixed points remain in a small ball around
zero is nontrivial. The proof proceeds by defining �ð"Þ the
unique positive solution of the scalar equation x=� ¼ SðxÞ,
which is clearly arbitrarily small when " ! 0, and the
smooth modified sigmoid function S";�:

S";�ðxÞ ¼
(
x=� jxj< �ð"Þ
SðxÞ jxj> �ð"Þ þ �

[the small interval [�ð"Þ, �ð"Þ þ �] allows us to define a
smooth continuation]. Because of the properties of the
sigmoidal function, and in particular the fact that the
differential is decreasing for x > 0 (and increasing for
x < 0), the same argument as used in the case �< 1
applied to system (1) defined with the sigmoid S";�
(termed modified system) ensures that all eigenvalues of
�Iþ J ��ðS0";�ðxÞÞ have a negative real part and hence

that the unique fixed point of the modified system is 0. In
particular, there is no fixed point outside the ball of radius
�ð"Þ. In that region the original and modified systems are
identical, implying that the only possible fixed points of the
original system are contained in the ball of radius �ð"Þ.
Therefore, one can split the expectation according to

whether jxj<�ð"Þ or not, yielding

E½Anð�Þ� ¼
Z
B�ð"Þ

dxE½j det½�Iþ J � �ðS0ðxÞÞ�j

� �0ð�xþ J � SðxÞÞ� þOð�ðn; "ÞÞ:
Moreover, thanks to the differentiability of the determinant
operator, we know that within the ball B�ð"Þ, the integrand
is equal to j detð�Iþ JÞj þO½�ð"Þ�, eventually yielding

E½Anð�Þ� ¼ E½j detð�Iþ JÞj� þO½�ð"Þ þ �ðn; "Þ�:
To evaluate this formula, we first compute the logarithm of
the determinant:

1

n
logj detð�Iþ JÞj ¼ 1

n

X
�2spðJÞ

logj�� 1j;

where spðJÞ denotes the spectrum of J, which in the large n
limit is uniformly distributed in the disk of radius � [29].
Using this property one obtains in the large n limit

PRL 110, 118101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 MARCH 2013

118101-2



1

n
logj detð�Iþ JÞj ¼ cð�Þ þ RðnÞ

and cð�Þ :¼ R
C logjz� 1j��ðdzÞ with ��ðdzÞ the uni-

form distribution on the disk of radius � ¼ 1þ " and
RðnÞ the finite-size error associated to the convergence to
the circular law. We have

1

n
logE½j detð�Iþ JÞj� ¼ cð�Þ þ 1

n
logE½enRðnÞ�: (3)

This ensures that 1n logE½Anð�Þ� is arbitrarily close to cð�Þ
when " ! 0 and n ! 1.

We are hence left computing cð�Þ. Since logjzj is
harmonic, we can show that for a, b > 0Z 2�

0
logja� bei	jd	 ¼ 2� log½minða; bÞ�;

ensuring that cð�Þ ¼ 0 for �< 1, which is consistent
with our previous analysis of this case, and

cð�Þ ¼ 1

��2

Z �

1
2�r logðrÞdr ¼ logð�Þ þ 1

2

� 1
�2

� 1
�
(4)

for �> 1. For � close to 1þ, we conclude that cð�Þ �
ð�� 1Þ2. Therefore we have shown that

E½Anð�Þ� � enð��1Þ2 (5)

up to multiplicative polynomial factors.
This combinatorial explosion of the number of equilibria

is the hallmark of the accumulation of bifurcations [30] in
the neighborhood of the critical parameter value � ¼ 1.
Moreover, this result provides a possible topological ex-
planation for the emergence of chaos. For �> 1, the phase
space is heavily mined with equilibrium points, most of
which are saddles due to the spectral properties of the
Jacobian matrices as discussed above. Typical trajectories
evolving in this landscape will hence wander from the
vicinity of the different unstable equilibria and attractors
appearing, inducing a very high sensitivity to perturba-
tions, a distinctive feature of chaos.

The classical characterization of chaos relies on the
evaluation of the maximal Lyapunov exponent of the
trajectories quantifying the dynamical complexity. This
quantity is defined as follows. Applying an infinitesimal
external perturbation xi ! xi þ �x0i on neuron i at time t0
induces a change on all neurons at subsequent times
xjðtÞ ! xjðtÞ þ �xjiðtÞ defining a susceptibility matrix

�ijðt0 þ 
; t0Þ ¼ �xjiðt0 þ 
Þ=�x0i . From the trace of this

matrix we shall define an averaged susceptibility �2ð
Þ ¼
limt0!1 1

n E½
P

i;j�
2
ijðt0 þ 
; t0Þ� and eventually obtain the

maximal Lyapunov exponent:

� ¼ lim
t!1

log½�2ðtÞ�
t

:

This quantity was analyzed in Ref. [8] by using a spectral
decomposition based on the one-dimensional Schrödinger
equation. Near criticality, the decomposition dramatically
simplifies and yields for �� 1þ

�� ð�� 1Þ2:
We hence conclude that the topological and dynamical
complexities have the same behavior at the edge of chaos.
More surprising is that, using the spectral decomposition of
the Schrödinger equation in the limit � � 1, Sompolinsky
and collaborators show that � diverges as logð�Þ, precisely
as the complexity of the system given in formula (4),
although our analysis rigorously only applies for � close
to 1. This further strengthens our microscopic interpre-
tation of the emergence of chaos in relationship with the
number of saddles.
If this interpretation is the actual phenomenon arising

in random neural networks at the edge of chaos, then
the same phenomenon may hold in simpler, lower-
dimensional dynamical systems with a large number of
unstable fixed points, and these shall display a similar
relationship between the number of unstable equilibria
and the Lyapunov exponent. Probably the simplest low-
dimensional system with an easily controllable number of
fixed points is the fakir bed dynamics, corresponding to the
movement of a particle in a two-dimensional complex
landscape with k unstable fixed points. More precisely, we
now consider a particle confined in a compact subset of R2,
with close to the origin a fixed number k of Gaussian hills
(corresponding to the presence of k unstable fixed points)
randomly chosen in space. Trajectories of particles soon get
chaotic as k increases [see Fig. 1(b)], and we numerically
compute the maximal Lyapunov exponent of the trajecto-
ries. Since the landscape is probabilistic due to the choice of
the location of hills, we compute the averaged maximal
Lyapunov exponent across 100 independent realizations
of the process and plot it against the logarithm of the number
of equilibria. The corresponding curve [Fig. 1(a)] indeed
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FIG. 1 (color online). The fakir bed dynamics. (a) Lyapunov
exponent averaged over 100 realizations of the fakir dynamics vs
number of fixed points (in semilogarithmic axes) and linear
regression (slope 0.36). (b) Random landscape and two trajecto-
ries with very close initial conditions.
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displays an increasing profile well approximated by a
linear curve: A clear relationship again emerges between
number of unstable fixed points and Lyapunov exponents,
supporting our interpretation related to the random neural
network.

Thus, motivated by the analysis of fine microscopic
phenomena arising at the edge of chaos in random neural
networks, we have shown that the average number of
equilibria scales exponentially with the system size, with
an exponential coefficient proportional to the Lyapunov
exponent. This property, relying in part on the spectral
theory of random matrices, readily inherits universality
properties of the circular law [31] and therefore is valid
for a large class of independent couplings beyond
Gaussian. Matrices satisfying Dale’s principle usually do
not fall in this universality class and do not necessarily
present the type of phase transition under consideration.
Indeed, Dale’s principle typically requires one to consider
correlated or noncentered synaptic weights, generally
modifying the spectrum of the connectivity matrix and
the network dynamics. Combining recent results on
the spectrum of such matrices [20,32] with the Kac-Rice
formula should provide new insight into the complexity of
these networks.

Moreover, our result shows that the complexity
smoothly increases with the disorder parameter with a
critical exponent 2, larger than 1, which corresponds to
second-order phase transitions. This property ensures a
form of structural robustness in the neighborhood of the
phase transition in the sense that the complexity-related
properties of the critical state would hold beyond the
edge of chaos, which may have several implications in
information processing capabilities [12]. Moreover, the

result obtained (5) reveals a particular scaling � ¼ 1þ
Oðn�ð1=2ÞÞ characterizing the typical thickness of the edge
of chaos for large finite-size networks. This study is
the first application to random neural networks of recent
methods used for counting the number of metastable
equilibria in spin glasses. From the theoretical viewpoint,
we extended that approach to out of equilibrium, non-
Hamiltonian systems at zero temperature (singular points
of a vector field). This identity incidentally found between
topological and dynamical complexity highlights what
we conjecture to be a deep correspondence in large com-
plex systems. Numerous questions and perspectives have
emerged from this study, among which is the estimation
of the distribution of equilibria and their number beyond
the edge of criticality, requiring significant advances in the
analysis of random matrix determinants or pursuing the
exploration, in line with Refs. [33–35], of the relationship
between topological and dynamical complexity with other
measures such as the fractal dimensions of chaotic
attractors.
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