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We consider the von Neumann and Rényi entropies of the one-dimensional quarter-filled Hubbard

model. We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence

on system size: for L ¼ 4mod 8 the results are in agreement with expectations based on conformal field

theory, while for L ¼ 0mod 8 additional contributions arise. We explain this observation in terms of a

shell-filling effect and develop a conformal field theory approach to calculate the extra term in the

entropies. Similar shell-filling effects in entanglement entropies are expected to be present in higher

dimensions and for other multicomponent systems.
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Over the course of the last decade, entanglement mea-
sures have developed into a powerful tool for analyzing
many-particle quantum systems, in particular in relation to
quantum criticality and topological order [1]. Within the
realm of one-dimensional (1D) systems, arguably the most
important result concerns the universal behavior in critical
theories, which is characterized by the central charge of the
underlying conformal field theory (CFT) [2–4]. Let us
consider the ground state jGSi of a finite, periodic 1D
system of length L and partition the latter into a finite block
A of length ‘ and its complement �A. The density matrix of
the entire system is then � ¼ jGSihGSj, and we will denote
the reduced density matrix of block A by �A. Widely used
measures of entanglement are the Rényi entropies

Sn ¼ 1

1� n
ln½Tr�n

A�: (1)

They encode the full information on the spectrum of �A [5],
and in the limit n ! 1 reduce to the von Neumann entropy
S1 ¼ �Tr�A ln�A. When the subsystem size ‘ is large
compared to the lattice spacing, Sn are given by

Sn ¼ c

6

�
1þ 1

n

�
ln

�
L

�
sin

�‘

L

�
þ c0n þ oð1Þ; (2)

where c is the central charge, c0n are nonuniversal additive
constants, and oð1Þ denotes terms that vanish for ‘ ! 1.
The result [Eq. (2)] has been confirmed formany spin chains
and itinerant lattice models; see Ref. [1] for recent reviews.
The knowledge of the entanglement entropies has led to a
deeper understanding of numerical algorithms based on
matrix product states [6] and has aided the development
of novel computational methods [7].

The Hubbard model is a central paradigm of strongly
correlated electron systems. Its 1D version has attracted
much attention for decades, because it is exactly solvable
and exhibits a Mott metal to insulator transition [8]. The
Hamiltonian for periodic boundary conditions is

HHubb ¼ �t
XL
j¼1

X
�

cyj;�cjþ1;� þ H:c:þU
X
j

nj;"nj;#; (3)

where cyj;� are fermionic spin- 12 creation operators at site j

with spin � ¼" , # , nj;� ¼ cyj;�cj;�, and we will assume

repulsive interactions U � 0. In the following we will for
the sake of definiteness fix the band filling to be one
electron per two sites, i.e., N" ¼ N# ¼ L

4 , but we stress

that our findings generalize to other fillings and, in fact,
to other models. It is known from the exact solution that the
ground state of Eq. (3) below half filling (less than one
fermion per site) is metallic and the low-energy physics of
the model is described by a spin and charge separated
Luttinger liquid [8] equivalent to the semidirect product
of two c ¼ 1 CFTs [9].
Given this state of affairs, it is quite surprising that the

entanglement entropies do not always follow Eq. (2). This
is shown in Fig. 1, which shows numerical results for S1

FIG. 1 (color online). DMRG data for S1 � 2=3 lnL as a
function of x ¼ ‘=L for U ¼ t and L ¼ 24, 28, 32, 36, 40, 44,
48, 52, 56, 60, 64. The lower and upper branches corresponds to
lattice lengths L ¼ 4mod 8 and L ¼ 0mod8, respectively.
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obtained by density matrix renormalization group
(DMRG) for a quarter-filled Hubbard model at U ¼ t for
a number of different lattice lengths L. Interestingly, both
the L ¼ 4mod 8 and the L ¼ 0mod 8 data exhibit scaling
collapse, but to different functions. As we will show, the
entropy for large lattice lengths L ¼ 4mod 8 is well
described by the CFT result equation (2) with n ¼ 1, while
for L ¼ 0mod 8 there is an additional positive contribution
�F0

1ð‘=LÞ, where

F0
1ðxÞ ¼ lnj2 sinð�xÞj þ c

�
1

2 sinð�xÞ
�
þ sinð�xÞ: (4)

Here c ðxÞ is the digamma function. We stress that this
behavior is very different from the lattice ‘‘parity effects’’
for Luttinger liquids [10,11], which refer to oð1Þ correc-
tions in Sn�2 only.

The shell-filling effect.—In order to understand the ori-
gin of the difference in entanglement entropies between
L ¼ 4mod 8 and L ¼ 0mod 8, we consider the ground
state in the limit U ! 0. Here we are dealing with non-
interacting, spinful fermions, for which the boundary con-
ditions on a ring fix the momenta to be pm ¼ 2�m=L with
integer m 2 ½�L=2; L=2Þ. For a chain of length
L ¼ 8nþ 4, quarter filling corresponds to an odd number
N� ¼ L=4 ¼ 2nþ 1 of spin-� fermions, and the unique
ground state is the symmetric Fermi sea

j2nþ 1iFS ¼
Yn

m¼�n

cy" ðpmÞcy# ðpmÞj0i; (5)

where cy�ðkÞ ¼ L�1=2
P

L
j¼1 e

�ikjcyj;� are creation operators

in momentum space and j0i is the fermionic vacuum state.
On the other hand, when L ¼ 8n, N� ¼ L=4 ¼ 2n is even
and it is impossible for a given spin species to form a
symmetric Fermi sea. As a result the ground state is degen-
erate. In particular, there are two degenerate ground states
with N� ¼ L=4 ¼ 2n, that have zero momentum and are
parity eigenstates (parity is a good quantum number)

j�i ¼ cy" ðkFÞcy# ð�kFÞ þ �cy# ðkFÞcy" ð�kFÞffiffiffi
2

p j2n� 1iFS: (6)

Here kF ¼ �=4 is the Fermi momentum and � ¼ �. As is
shown below, theU ! 0 limit of theHubbardmodel ground
state gives the state jþi. The shell-filling effect is now clear:
for L ¼ 4mod 8 the ground state is a symmetrically filled
Fermi sea, while for L ¼ 0mod 8 it is given by the linear
superposition of two asymmetric Fermi seas. In terms of
spin symmetries this state corresponds to the Sz ¼ 0 com-
ponent of aS ¼ 1multiplet.We note that the entropy for the
superpositions j�i are higher. Intuitively this derives from
the fact that the states j�i are less constrained, as the
momentum difference between up spin and down spin
fermions can take two values.

Bethe Ansatz (BA) solution.—We now turn to the case
U > 0. Eigenstates of the Hubbard chain are parametrized

in terms of the solutions f��; kjg of the following set of

coupled BA equations [8,12]

kjL ¼ 2�Ij �
XN#

�¼1

�

�
sinkj ���

u

�
; j ¼ 1; . . . ; N;

XN
j¼1

�

�
�� � sinkj

u

�
¼ 2�J� þ XN#

�¼1

�

�
�� ���

2u

�
;

� ¼ 1; . . . ; N#: (7)

Here u ¼ U=ð4tÞ, �ðxÞ ¼ 2 arctanðxÞ, and N ¼ N" þ N#.
For real solutions of the BA equations (7), the ‘‘quantum
numbers’’ Ij (J�) are integers ifN# is even (ifN" is odd) and
half-odd integers if N# is odd (if N" is even). The momen-

tum is expressed in terms of the parameters f��; kjg by
P ¼ P

N
j¼1 kj, while the energy (in units of t) is given by

E ¼ uL� XN
j¼1

½2 cosðkjÞ þ�þ 2u�; (8)

where� is the chemical potential. Following Ref. [13], we
define regular BA states as eigenstates of Eq. (3) arising
from solutions of Eq. (7) with 2N# � N, where all kj and

�� are finite. We denote these states by jfIjg; fJ�gireg. As
was shown in Ref. [13], all regular BA states are lowest-
weight states with respect to the SO(4) symmetry of the
Hubbard model [14], and a complete set of energy eigen-
states is obtained by acting on them with the SO(4) raising
operators. For L ¼ 4mod 8 it is known [8,12] that the
quarter-filled ground state is a regular BA state character-
ized by the choice Ij ¼ �2n� 3

2 þ j, j ¼ 1; . . . ; 4nþ 2

and J� ¼ �n� 1þ �, � ¼ 1; . . . ; 2nþ 1.
For L ¼ 8n (n a positive integer), we find that there are

two degenerate lowest energy regular, real solutions of
Eq. (7) with N" ¼ N# ¼ 2n fermions. They are obtained

by the two choices Jð1;2Þ� ¼ �n� 1
2 þ �, � ¼ 1; . . . ; 2n

and Ið1Þj ¼ �2nþ j, j ¼ 1; . . . ; 4n or Ið2Þj ¼�2n�1þj,

j ¼ 1; . . . ; 4n. We stress that the distribution of the Ij is

asymmetric around zero in both cases. Interestingly, these
are not ground states. The regular solution with the lowest
energy involves one pair of complex conjugate
��’s known as a 2-string, but it is not the ground state
either.
Let us now consider regular BA states with total spin

quantum number Sz ¼ 1, i.e., N" ¼ 2nþ 1, N# ¼ 2n� 1.
These are by construction lowest-weight states of the spin-
SU(2) symmetry algebra. The lowest energy regular BA
state in this sector corresponds to the (symmetric) choice

Ið0Þj ¼ �2n� 1
2 þ j, j ¼ 1; . . . ; 4n, and Jð0Þ� ¼ �nþ �,

� ¼ 1; . . . ; 2n� 1. Crucially, the state

S�jfIð0Þj g; fJð0Þ� gireg; (9)

is a (nonregular) eigenstate of the Hubbard Hamiltonian

with N" ¼ N# ¼ L=8 fermions. Here S� ¼ P
L
j¼1 c

y
j;#cj;" is
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the spin lowering operator. As ½S�; H� ¼ 0 its energy is the

same as that of the regular BA state jfIð0Þj g; fJð0Þ� gireg. The
energy difference between Eq. (9) and the regular solutions
discussed above can be calculated for large L using stan-
dard methods [9] and is found to be negative. Considering
other nonregular Bethe Ansatz states in an analogous way,
we find that Eq. (9) is in fact the ground state.

Bosonization.—The low-energy physics of the Hubbard
model is described by a spin-charge separated two-
component Luttinger liquid Hamiltonian [15]

H ¼ X
a¼c;s

va

2

Z
dx½ð@x�aÞ2 þ ð@x�aÞ2�; (10)

where vc;s are the velocities of the collective charge and

spin degrees of freedom. For L ¼ 0mod 8 the mode expan-
sions of the canonical Bose fields �a ¼ ’a þ �’a, and
their dual fields �a ¼ ’a � �’a follow from

�’aðx; tÞ ¼ �Pa þ xþ
La0

�Qa þ
X1
n¼1

e�ið2�nÞ=ðLa0Þxþ �aa;n þ H:c:ffiffiffiffiffiffiffiffiffi
4�n

p ;

’aðx; tÞ ¼ Pa þ x�
La0

Qa þ
X1
n¼1

eið2�nÞ=ðLa0Þx�aa;n þ H:c:ffiffiffiffiffiffiffiffiffi
4�n

p ;

(11)

where x� ¼ x� vt and a0 is the lattice spacing. The
structure of the ground state for L ¼ 0mod 8 is encoded
in the zero modes, which have commutations relations
½Pa; Qa� ¼ � i

2 ¼ �½ �Pa; �Qa�. The eigenvalues of Qa are

qc ¼
ffiffiffiffiffiffiffiffiffi
�

8Kc

s X
�¼";#

ðKc þ 1Þm� þ ð1� KcÞ �m�;

qs ¼
ffiffiffiffi
�

2

r
ðm" �m#Þ;

(12)

where Kc is the Luttinger parameter in the charge sector,
m� are half-odd integer numbers, and the eigenvalues of
�Qa are obtained by interchanging m� $ �m�. The
Hamiltonian then has the mode expansion

H ¼ X
a¼c;s

va

La0

�
Q2

a þ �Q2
a þ

X1
n¼1

2�nðaya;naa;n þ �aya;n �aa;nÞ
�
:

(13)

There are two degenerate ground states

j�i ¼ 1ffiffiffi
2

p
�������12 ; 0; 0; 12

�
�

������0; 12 ; 12 ; 0
��

; (14)

where we have introduced a notation jm"; m#; �m"; �m#i for
states that are annihilated by all aa;n, �aa;n and have eigen-

values qaðm�; �m�Þ and �qaðm�; �m�Þ of the zero mode op-
erators Qa and �Qa, respectively. In the Hubbard model the
degeneracy between jþi and j�i is removed by the pres-
ence of a marginally irrelevant interaction of spin currents
and the ground state in fact corresponds to jþi. In principle
one could now generalize the CFT calculation of

entanglement entropies of Ref. [3] to the case at hand.
Rather than doing so, we pursue the following shortcut.
Let us carry out the conformal map from the cylinder to the
plane [16], i.e., z ¼ exp½ 2�La0 ðvt� ixÞ�, �z ¼ exp½ 2�La0 ðvtþ
ixÞ�. Then expectation values in the state jþi of operators
in the bosonic theory equation (13) with zero-mode quan-
tization conditions [Eq. (12)] are formally the same as the
expectation values of the corresponding operators in the
‘‘usual’’ compactified boson theory in the state

lim
z;�z!0

cos½ ffiffiffiffiffiffiffi
2�

p
�sðz; �zÞ�j0i: (15)

Here by usual we mean the boson theory equation (13)
with zero-mode quantization conditions [Eq. (12)], where
now m�, �m� are integers, and j0i is the vacuum state
j0; 0; 0; 0i of this theory. While the state [Eq. (15)] is not

an excited state, because cosð ffiffiffiffiffiffiffi
2�

p
�sÞ is not a local opera-

tor of the compactified boson theory, it has the same
structure. This allows us to utilize results for entanglement
entropies in low-lying excited states in CFTs.
CFT approach to the Rényi entropies.—A general

approach to the latter problem has been recently developed
by Alcaraz et al. [17,18] and their main result can be
summarized as follows. The nth Rényi entropy for an
excited state of the form Oð0; 0Þj0i is given by

Sn ¼ c

6

�
1þ 1

n

�
ln

�
L

�
sin

�
�‘

L

��
þ c0n

þ 1

1� n
ln½Fnð‘=LÞ� þ oðLÞ; (16)

where c0n are O-independent constants, and the scaling

functions FO
n ðxÞ are given by

FnðxÞ ¼
hQn�1

k¼0 O½�n ðxþ 2kÞ�Oy½�n ð�xþ 2kÞ�i
n2nðhþ �hÞhOð�xÞOyð��xÞin : (17)

Here h and �h are the conformal dimensions of the operator

O. In our case OðxÞ ¼ 2 cos½ ffiffiffiffiffiffiffi
2�

p
�sðxÞ� and we need to

evaluate (� ¼ P
n
l¼1 �l)*Y2n

j¼1

OðxjÞ
+
¼ X

�1;...;�n¼�
��;0

Y
i<j

��������2sin
�
xi�xj

2

�����������i�j

;

(18)

where the xj’s are given by Eq. (17). We find that Fs
nðxÞ can

be expressed as the square root of a determinant, which,
surprisingly, is identical to Eq. (56) of Ref. [18]. We have
succeeded in expressing this determinant in a form ame-
nable for analytic continuation in n

½FnðxÞ�2 ¼
Yn
p¼1

�
1� ðn� 2pþ 1Þ2

n2
sin2ð�xÞ

�

¼
""

2 sinð�xÞ
n

#
n �ð1þnþn cscð�xÞ

2 Þ
�ð1�nþn cscð�xÞ

2 Þ

#
2

: (19)

PRL 110, 115701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 MARCH 2013

115701-3



Using that for the Hubbard model c ¼ 2 we then obtain a
CFT prediction for the shell-filling effect by combining
Eqs. (19) and (16). In order to obtain an expression for the
von Neumann entropy we need to take the limit n ! 1,
which gives

S1 ¼ c

3
ln

�
L

�
sin

�‘

L

�
þ c01 � F0

1ð‘=LÞ þ oðLÞ; (20)

where F0
1ðxÞ is given by Eq. (4). We note that both Eqs. (19)

and (20) apply also to certain excited states in spin chains
[18]. For small x, we have ðF1ðxÞÞ0 ¼ �2x2=3þOðx4Þ in
agreement with the general result in Ref. [17].

Comparison with numerical results.—We performed
extensive DMRG [19] computations of the periodic
quarter-filled Hubbard model by keeping M ¼ 3000 states
in order to achieve satisfactory convergence for periodic
systems up to length L ¼ 64. For small values ofU & twe
find good agreement for both S1 and S2 with the prediction
equations (20) and (16). A representative example is shown
in Fig. 2. As expected the agreement with the CFT pre-
diction is best for large block lengths ‘� L=2 and
becomes poor for small ‘, when lattice effects become
important. In this region S2 furthermore exhibits strong
oscillatory behavior as expected [10]. For larger values of
U * t the agreement with the CFT predictions for both S1
and S2 becomes increasingly poor. We now turn to the
origin of these discrepancies.

Effects of the marginal perturbation.—It is well known
that in the Hubbard model the low-energy Luttinger liquid
Hamiltonian equation (10) is perturbed by a marginally
irrelevant operator in the spin sector [15]. This leads to
logarithmic corrections [20], which can be quite important
for small system sizes. The effects of a marginal perturba-
tion on the ground-state entanglement in CFTs was studied
in Ref. [21]. These corrections are small for the isotropic
Heisenberg chain [22] as well as the Hubbard model for
L ¼ 4mod 8. However, the effects of the marginal pertur-
bation on the shell-filling effect are quite large already for

moderate values of U * 2t. In order to quantify them, we
have considered an extended Hubbard model

Hext ¼ HHubb þ V2

X
j;�;�0

nj;�njþ2;�0 : (21)

At weak coupling the main effect of V2 is to reduce the bare
coupling constant of the marginal perturbation (see
Ref. [23] for a similar application of this idea). We note
that a nearest-neighbor density-density interaction would
be ineffective at quarter filling and weak coupling [24]. We
find that increasing V2 from zero leads to a significant
improvement in the agreement between the CFT prediction
equations (20) and (16), for the shell-filling effect for the
available system sizes L � 64.
Conclusions.—We have described a novel shell-filling

effect in entanglement entropies of the 1D quarter-filled
Hubbard model with periodic boundary conditions. We
have verified that the effect occurs, as expected, also at other
fillings and in extended Hubbard models. We have devel-
oped a CFTapproach to calculate the additional contribution
to the Rényi entropies, and found good agreement with
numerical computations. The effect, while somewhat unex-
pected, has a simple origin: for certain ratios of lattice
lengths to particle numbers in multicomponent systems,
the ground state cannot be thought of in terms of a product
of Fermi seas (in general these will consist of appropriate
elementary excitations), but is in fact a linear combination of
different such seas. This suggests similarities with the results
obtained [25,26] for the entanglement of linear combinations
of degenerate ground states. However, in our case the ground
state is unique for U > 0 (and fixed Sz ¼ 0) and is thus not
based on a degeneracy.We expect shell-filling effects to exist
for multicomponent continuum or lattice models of interact-
ing fermions or Fermi-Bose mixtures, as well as in higher
dimensional critical systems. Examples of the former
include multicomponent gases with delta-function interac-
tions [27], (extended) repulsive SU(N) Hubbard or tJ models
[28]. Finally, we believe that shell-filling effects can play a
role in numerical studies of two-dimensional gapless spin
liquids, which display a spinon Fermi surface [29–31].
We are grateful to F. Alcaraz, I. Affleck, J. Cardy, M.

Fagotti, and N. Robinson for helpful discussions. This
work was supported by the EPSRC under Grants No. EP/
I032487/1 and No. EP/J014885/1 (F. H. L. E.), the ERC
under Starting Grant No. 279391 EDEQS (PC) and the
National Science Foundation under Grant No. NSF
PHY11-25915 (F. H. L. E., A.M. L., and P. C.). We thank
the GGI in Florence and the KITP in Santa Barbara for
hospitality.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.
Phys. 80, 517 (2008); J. Eisert, M. Cramer, and M. B.
Plenio, ibid. 82, 277 (2010); P. Calabrese, J. Cardy, and B.
Doyon, J. Phys. A 42, 500301 (2009).

FIG. 2 (color online). �S1 � S1 � 2
3 ln½L� sinð�‘L Þ� � c01 as a

function of x ¼ ‘=L for U ¼ 0:3t and L ¼ 24, 32, 40, 48, 56,
64. The constant c01 ¼ 1:205 has been adjusted by hand. The

solid curve is �F0
1ðxÞ.

PRL 110, 115701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 MARCH 2013

115701-4

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1088/1751-8121/42/50/500301


[2] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424,
443 (1994); G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev,
Phys. Rev. Lett. 90, 227902 (2003); J. I. Latorre, E. Rico,
and G. Vidal, Quantum Inf. Comput. 4, 048 (2004).

[3] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002; P.
Calabrese and J. Cardy, J. Phys. A 42, 504005 (2009).

[4] V. E. Korepin, Phys. Rev. Lett. 92, 096402 (2004).
[5] P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329

(2008).
[6] L. Tagliacozzo, T. R. de Oliveira, S. Iblisdir, and J. I.

Latorre, Phys. Rev. B 78, 024410 (2008); F. Pollmann,
S. Mukerjee, A.M. Turner, and J. E. Moore, Phys. Rev.
Lett. 102, 255701 (2009).

[7] J. I. Cirac and F. Verstraete, J. Phys. A 42, 504004 (2009);
G. Vidal, in Understanding Quantum Phase Transitions,
edited by L.D. Carr (Taylor & Francis, Boca Raton, FL,
2010), Chap. 5.

[8] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and
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Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[20] See, e.g., J. L. Cardy, J. Phys. A 19, L1093 (1986); I.
Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A
22, 511 (1989); I. Affleck, J. Phys. A 31, 4573 (1998); S.
Lukyanov, Nucl. Phys. B522, 533 (1998).

[21] J. Cardy and P. Calabrese, J. Stat. Mech. (2010) P04023.
[22] F. C. Alcaraz (unpublished).
[23] D. Schuricht, S. Andergassen, and V. Meden, J. Phys.

Condens. Matter 25, 014003 (2013).
[24] H. Yoshioka, M. Tsuchizu, and Y. Suzumura, J. Phys. Soc.

Jpn. 70, 762 (2001).
[25] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.

Vishwanath, Phys. Rev. B 85, 235151 (2012).
[26] O. A. Castro-Alvaredo and B. Doyon, Phys. Rev. Lett.

108, 120401 (2012); V. Popkov, M. Salerno, and G.
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