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The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using

in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic

constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of

181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys.

109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to

calculate strength from first principles.
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The response of materials to dynamic compressive load-
ing has been the subject of intense research over recent
years [1]. It is well known that when a material is subjected
to a shear stress in excess of the elastic limit during uni-
axial compression, plastic relaxation processes act to
reduce that stress until its ultimate limiting value, the
material strength, is reached. Strength causes solids to
deviate from idealized fluidlike response, and is important
for a full understanding of wave propagation, compression,
and hydrodynamic instability evolution in metals [2].

Strength is a complex function of material parameters
and loading conditions (pressure and strain rate) and is
often treated with the use of empirical constitutive models
[3]. While these models are useful, a true understanding of
strength requires a theoretical framework based on first
principles that can make reliable predictions over a wide
range of pressures and strain rates, and suitable experimen-
tal techniques to validate those predictions.

In situ x-ray diffraction is a powerful experimental
technique for characterizing the state of shock-compressed
material, because it yields direct experimental information
on crystal strain as a function of applied loading (pressure),
from which strength can be inferred. For example, recent
experiments have inferred the strength in shock-
compressed Cu [4], Fe [5], and Al [6]. However, there
are few such data available for high-Z elements. This is
because as the atomic number of the sample increases, the
technique becomes more challenging; very bright sources
of increasingly higher energy x rays are required to probe
the high-density region of the compressed sample [7]. In
this Letter, we report on the first measurements of strain
and associated strength of Ta single crystals shocked along
the [100] direction at shock stresses up to �205 GPa, and
show that the results compare favorably with a strength
model calculated from first principles.

The experimental technique used was broadband
(‘‘white-light’’) x-ray diffraction in transmission Laue
geometry [8,9]. This method was enabled by an implosion
capsule x-ray source [10] that produced a broadband,
smoothly varying, and repeatable bremsstrahlung spectrum
with photon energies up to �25 keV and a typical implo-
sion emission time scale of �150 ps, which set the
temporal resolution of the x-ray diffraction probe. The
capsule provides a convenient means of converting a large
amount of laser energy (>20 kJ) into a high-energy x-ray
‘‘point’’ source suitable for probing high-Z materials such
as Ta.
In this white-light x-ray diffraction technique, multiple

crystallographic planes in the sample satisfy the Bragg
condition simultaneously, each such plane giving rise to a
characteristic spot in the resulting diffraction pattern
(Fig. 1). The Laue spots are formed by the quasicollimating
effect of a pinhole on which the sample is mounted; the
locations of the spots on the detectors are sensitive to the
strain state of the sample, as discussed later.
Figure 1 also shows the experimental geometry. The

implosion capsule x-ray source was placed 20 mm from
the surface of the sample. Diffracted x rays were recorded
on image plate detectors [11] mounted on the inside of a
pyramid-shaped enclosure made of tungsten alloy (heav-
imet), referred to as the broadband x-ray diffraction
(BBXRD) diagnostic, which also served to mount
the sample during the experiment. Each sample consisted
of a 5 �m-thick tantalum crystal embedded between
a 10 �m-thick nanocrystalline, high-density carbon
(n-HDC) ablator and a 40 �m-thick optically transparent
microcrystalline HDC (�-HDC) tamper. Epoxy layers at
the HDC-Ta interfaces were 2� 1 �m thick, and each
crystal package was mounted on a heavimet collimating
pinhole with a nominal aperture diameter of 250 �m.
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A shock was launched perpendicular to the ablator
surface into the sample by a single beam of the OMEGA
laser system, which was incident at an angle of 24.8� to the
ablator surface normal. The tantalum crystal orientation
was chosen such that the shock propagated along the [100]
direction of the crystal. The drive laser had a 1 ns square
pulse shape, energy between 10 and 45 J (at laser wave-
length of 351 nm), and was focused using an SG8 distrib-
uted phase plate which generates a super-Gaussian flat-top
spot with a 1=e radius of 438 �m. The capsule backlighter
was driven by 44 beams, each with nominally 500 J at
351 nm in a 1 ns square pulse, focused using an SG4
distributed phase plate to a spot with a 1=e radius of
352 �m. Simultaneously, VISAR was used to measure
the velocity of the interface between the Ta and the
�-HDC tamper.

The peak applied longitudinal stress �S experienced by
the Ta sample was calculated using a standard impedance-
matching method [12] applied at both the ablator-Ta and
Ta-tamper interfaces, with the assumption that the epoxy
layers can be ignored (the validity of which is discussed
below), and using Hugoniot data from Ref. [13] (ablator
and tamper) and Ref. [14] (Ta). Additionally, the analysis
of the ablator-Ta interface requires the longitudinal stress
developed in the ablator �HDC, which was calculated from
the scaling law �HDCðGPaÞ ¼ 42IðTW=cm2Þ0:71 [15],
where I is the laser drive intensity. In the analysis of the
Ta-tamper interface, the peak velocity of that interface was
used, and was obtained by taking the peak apparent

velocity measured using VISAR and dividing it by a
window correction factor of 2.7, appropriate for the
�-HDC tamper which also acted as a velocimetry window.
The correction factor was determined from the linear
relationship between the refractive index and density for
diamond [16].
The results from the two impedance-matching calcula-

tions were averaged to produce the quoted value for�S and
associated error bars. Detailed simulations of the shock
propagation through the target package show that when the
glue layers are taken into account, the range of stress states
in the compressed crystal at the time of the x-ray diffrac-
tion measurement is encompassed by the error bars result-
ing from the impedance matching analysis. In essence,
shock reverberations in the epoxy layer between the ablator
and Ta sample are observed in the simulations as the epoxy
‘‘rings up’’ to peak pressure, but are seen to coalesce
promptly in the Ta to produce a well-defined compressed
region, consistent with the observations as described
below.
Figure 2 shows representative diffraction patterns

recorded on a single image plate of the BBXRD diagnostic
at two different shock stresses. Because of symmetry in the
experimental geometry (the capsule being placed on the
BBXRD axis as shown in Fig. 1), the pattern is repeated on
the other three image plates mounted orthogonally with
respect to one another in the interior of the diagnostic
enclosure.
In these experiments we probe the Ta sample (pulse the

white-light backlighter) when the shock has traversed part
of the way through the sample. We therefore record the
superposition of two distinct diffraction patterns: one from
the ambient crystal which serves as a zero-compression
reference pattern, and one from the compressed crystal,

FIG. 2. (a) Diffraction pattern recorded from a partially
shocked Ta [100] sample at a longitudinal stress of 106 GPa,
illustrating features with Miller indices (211) attributable to both
the ambient (solid circle) and shocked (dashed circle) sections of
the crystal sample. The dotted circles indicate the approximate
location of a diffraction spot that would be produced by a
uniaxially compressed crystal at that longitudinal stress. The
black arrows indicate the direction in which the dashed-circled
spots shift with increasing strain. (b) Diffraction pattern anno-
tated as in (a) but at a longitudinal stress of 205 GPa. Note the
black arrow is longer than the corresponding arrow in (a),
representative of an increase in the crystal strain at the higher
longitudinal stress.

FIG. 1 (color online). Experimental geometry. The crystal
sample is mounted on a pinhole on the front of the BBXRD
diagnostic, and is shock-loaded along the [100] direction using a
single beam of the OMEGA laser system. The sample drive
beam is incident at an angle of 24.8� to the surface normal, and
the VISAR axis is aligned along [100]. Continuum (white light)
x rays from a prompt capsule implosion driven by 44 beams are
collimated by the pinhole and diffracted from the sample to
produce a characteristic Laue diffraction pattern on image plate
detectors mounted on the interior of the BBXRD enclosure
(example rays are shown in red). Each diffraction spot is attrib-
utable to a particular crystallographic plane and is formed by the
quasicollimating effect of the pinhole on which the crystal
sample is mounted.
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which is spatially shifted with respect to the ambient
pattern on the detector.

This shift is a function of the aspect ratio � of the
compressed unit cell, defined as � ¼ jaj=jbj ¼ jaj=jcj ¼
ð1� "SÞ=ð1� "TÞ, where a, b, and c are the unit cell
vectors and "S and "T are the strains in the shock and
transverse directions, respectively (here a is aligned with
the direction of shock propagation). The strains are given

by "S ¼ 1� ð�2=�Þ1=3 and "T ¼ 1� ð��Þ�1=3, where
� ¼ �m=�m0 is the compression and �m and �m0 are the
compressed and initial mass density, respectively. We also
define a shear strain as ��ð�;�Þ ¼ �S � �T .

In order to determine � from each diffraction pattern,
ray tracing of the known experimental geometry from the
x-ray source through to the detector, with application of
Bragg’s law at the sample, is employed to fit the diffraction
pattern (on all four image plates) associated with the
ambient crystal. This permits the diffraction spots in the
pattern to be identified in terms of Miller indices, and
the precise mounting orientation of the Ta sample to be
determined. With the sample orientation known, the dif-
fraction pattern of the compressed crystal is then fit using�
as a single fitting parameter.

With the longitudinal stress �S and aspect ratio � deter-
mined for each shot, we proceed to calculate the pressure
(mean stress) and strain state of the compressed crystal.
Starting with the general tensor relation between stress and
strain �i ¼ Cij"j, where Cij are pressure-dependent

single-crystal elastic constants in Voigt notation and due
to cubic symmetry in the Ta lattice, only C11, C12, and C44

are nonzero. We denote �1 ¼ �S and �2 ¼ �3 ¼ �T ,
where �S and �T are the longitudinal and transverse
stresses, respectively, and pressure �P ¼ ð�S þ 2�TÞ=3.
The stress-strain relation reduces to

�S ¼ �0
S þ �P; �0

S ¼ 4

3
C0ð �PÞ�"ð�;�Þ; (1)

where �0
S is the longitudinal deviatoric stress and C0ð �PÞ ¼

½C11ð �PÞ � C12ð �PÞ�=2 is the effective shear modulus. We
assume that the compressed state lies on the Ta Hugoniot,
so that the compression � is a known function of �P [14].
The shear modulus C0ð �PÞ is calculated from density func-
tional theory [17] (again assuming the compressed state is
on the Hugoniot) and is shown in the inset to Fig. 4. The
pressure is then obtained by solving Eq. (1) and the full
strain state of the crystal can then be determined. The
experimentally deduced shear strain �" is shown as a
function of applied stress in Fig. 3.

The data are compared with a uniaxial (1D) compression
curve calculated using Eq. (1) with "T ¼ 0. Purely hydro-
static compression would lie on the �" ¼ 0 line. The
observed strain is lower than that for uniaxial compression,
indicating that the crystal has relaxed due to the onset
of plastic flow. Over the time scale of the experiment
(�1 ns, approximately the time taken for the shock to

traverse the sample) we observe no difference in strain as
a function of time within the experimental error bars for a
given shock stress. Furthermore, there is no evidence of a
partially relaxed region in the sample which would give
rise to diffracted intensity in the region between the spots
from the compressed crystal and the expected location
of spots due to a uniaxially compressed crystal, as shown
in Fig. 2.
We therefore conclude that the material has reached a

steady state and nonhydrostatic condition, such that the
measured residual strain is related to the strength of the
material, and that the relaxation to that state is much
shorter than 1 ns. This conclusion is supported by molecu-
lar dynamics simulations [18] which indicate rapid
(<5 ps) relaxation time scales above shock pressures of
�60 GPa, due to the onset of homogenous nucleation and
flow of dislocations which constitute the relaxation pro-
cess. The von Mises strength �� is then readily calculated
from �� ¼ 3

2�
0
S ¼ 2C0ð �PÞ�", and is shown in Fig. 4 along

with the strength predicted by a variety of models
described in the literature.
In order to evaluate the strength models, the equivalent

plastic strain �" ¼ 2�"=3 and strain rate _" are required. To
estimate strain rate, we use the well-known Swegle-Grady
relation _" ¼ k�4

S [19], where k ¼ 27:34 s�1 GPa�4 for

Ta [20]. This relation is valid when the Bland number
B ¼ L=� � 1 [21], where L is the sample thickness and
� ¼ 8

3C0=ðS _"Þ is the characteristic distance over which a

step input wave would become steady. The parameters
C0 ¼ 3:414 �m=ns and S ¼ 1:2 applicable to Ta [14]
specify the equation of state relation uS ¼ C0 þ Sup,

where uS and up are shock and particle speeds, respec-

tively. For �S ¼ 130 GPa (corresponding to approxi-
mately the center of the stress range in the data set),
the Swegle-Grady relation gives _" ¼ 7:8� 109 s�1, and

FIG. 3. Plot of shear strain �" vs applied longitudinal stress
�S. The measured strain is well below the calculated curve for
1D elastic compression, indicating plastic relaxation. Purely
hydrostatic compression would lie on the �" ¼ 0 line, corre-
sponding to zero shear strain.
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� ¼ 1 �m. The Bland condition then demands that
L > 1 �m to ensure that B> 1. For the current case
L ¼ 5 �m, we therefore assume that the Swegle-Grady
relation provides a simple first-order estimate of the strain
rate for the purpose of evaluating the strain rate dependent
strength models.

Returning to Fig. 4, the Steinberg-Guinan (SG) [22] and
Steinberg-Lund (SL) [23] models may not be expected to
be applicable in the regime explored here, which represents
a large extrapolation from where the models are known to
be reliable. Indeed, we find that these models underpredict
the strength by an order of magnitude. In the high strain
rate regime of the experiment, the Preston-Tonks-Wallace
(PTW) model [24] reduces to the power-law form

��� ð _"= _�Þ0:23, where _� ¼ ½�1=6Gð �P; TÞ�1=2, consistent
with Wallace’s theory of overdriven shocks in metals
[25]. Here Gð �P; TÞ is the shear modulus (T being tempera-
ture) and was taken to be of the Steinberg-Guinan form.
Although Wallace’s theory is expected to be reliable to
pressures >100 GPa [25], the strength predicted by the
PTW model is a factor of �3:3 lower than that obtained
from the present experiment but does correctly reproduce
the observed trend of higher strength with increasing pres-
sure and strain rate.

To better understand the observed strength scaling we
use a multiscale (MS) strength model described in Barton
et al. [26], which employs a hierarchy of simulation meth-
ods starting from density functional theory and then pass-
ing information up through the scales, to calculate strength
on the continuum level. Strength is obtained from the
dislocation mobility law

�� ¼ M½	�ðvÞ	P þ 
bG�1=2
sat0½ _"ð�SÞ= _"0�n=2 þ 	a�; (2)

where M ¼ 2:4495 is the Taylor factor for h100i Ta, 	P is
the Peierls stress, b is the magnitude of the Burgers vector
and 	�ðvÞ is a function of the mean dislocation velocity v
that describes the drag and activation regimes of disloca-
tion flow. The material parameters 
, �sat0, _"0, n, and 	a
are taken from Ref. [26].
We use a simplified form of the MS model in which the

dislocation density is set equal to the saturation density
�satð _"Þ. This modification of the MS model is motivated
by the molecular dynamics prediction of rapid dislocation
nucleation at these high stresses, and the<5 ps nucleation
period is treated as instantaneous. The MS model as pub-
lished predicts slower dislocation multiplication and stress
relaxation over a few ns [18], which is inconsistent with the
experimental data. We also note that in the paper of Barton
et al., the shear modulus G for Ta reduces to the Steinberg-
Guinan form, but with the exclusion of the thermal soften-
ing term. This was appropriate for successfully modeling
low temperature Rayleigh-Taylor instability experiments
[2,23]. However, in the case presented here, where the
temperature is significant due to shock heating (tempera-
tures of 650 to 4800 K for the range of shock pressures
studied), we use the shear modulus calculated by
Orlikowski et al. [17] to properly capture the effect of
thermal softening. Excellent agreement with the data is
obtained. At �P ¼ 100 GPa (�S � 113 GPa) and _" ¼
4:5� 109 s�1, we find ��18 GPa. For comparison, in the
experiments of Park et al. [2], where rippled Ta samples
were ramp-loaded to �100 GPa and _"107 s�1 to study
Rayleigh-Taylor growth, the time-averaged flow stress in
the evolving sample was �6 GPa, namely, a factor �3
lower. Both the results presented here and those of Park
et al.were found to be consistent with the multiscale model
and illustrate its ability to predict strength at high pressure
over several orders of magnitude in strain rate.
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