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In classical physics, the joint probability of a number of individually rare independent events is given

by the Poisson distribution. It describes, for example, the unidirectional transfer of a population between

the densely and sparsely populated states of a classical two-state system. We derive a quantum version of

the law for a large number of noninteracting systems (particles) obeying Bose-Einstein statistics. The

classical law is significantly modified by quantum interference, which allows, among other effects, for

the counterflow of particles back into the densely populated state. The suggested observation of this

classically forbidden counterflow effect can be achieved with modern laser-based techniques used for

manipulating and trapping cold atoms.
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In classical physics and statistics, the probability for a
number of individually rare events is universally given by the
Poisson distribution (see, for instance, Ref. [1]). For ex-
ample, it is obeyed by a classical gas escaping into an empty
space through a penetrable membrane. With the number of
atoms N large, and the transition probability made propor-
tionally small, the number of escaped atoms is governed
by the Poisson law, with the number of atoms recaptured into
the original reservoir vanishing as N ! 1. The validity of
the Poisson distribution depends on that one can, in principle,
know not only how many but also which of the atoms have
escaped. Quantum mechanics offers a different possibility:
for identical particles one is allowed to know only the
number of the escapees, and not their identities. While it
is well known that both Fermi-Dirac and Bose-Einstein
symmetries of a wave function may lead to non-Poissonian
effects in the full counting statistics of otherwise independent
particles [2–8], the failure of the Poisson law in the limit of
rare events is less obvious. The subject of this Letter is the
general question ofwhat replaces the classical Poisson law in
a quantum situation where only the total number of rare
events, but not their individual details, can be observed.

We specify to the case of many noninteracting bosons,
each of which may occupy one of the two available states.
Such systems are also of practical interest, e.g., for their
potential applications as detectors. For example, if the
transmission amplitude between two connected cavities
is influenced by a passing particle, the change observed
in the photonic current will announce the particle’s arrival.
In a similar way, the atomic current of a weakly interacting
Bose-Einstein condensate (BEC) trapped in a double- or
multiwell potential (see Fig. 1) can be used to gain infor-
mation about the state of a qubit coupled to the BEC
[9–11]. A detailed analysis of the work of such hybrid
bosonic devices must take into account the manner in
which, and how frequently, the bosonic subsystem is
observed, and will be given elsewhere.

We note that the problem is fundamentally different
from that of the frequently studied coined quantum walk
[12], where interference between virtual paths available to
a single particle modifies the classical Gaussian distribu-
tion. In our case, modification of the classical law is a
many-body effect, specific to the Bose-Einstein statistics.
We start by constructing transition amplitudes for a

single particle, which can occupy one of the two levels in
an asymmetric double well potential. In terms of the Pauli
matrices, the Hamiltonian reads

Ĥ ¼ ��z þ ��x þ ��y; (1)

where the spin states j1i and j2i, aligned up and down the z
axis, represent an atom in the right and left state, respec-
tively, � is the difference between the energies of the states,
and � and � together define the tunneling matrix element,

T ¼ �þ i�. For the evolution operator ÛðtÞ ¼ expð�iĤtÞ
we have

ÛðtÞ ¼ I cosð!tÞ� i!�1½��zþ��xþ��y� sinð!tÞ; (2)
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FIG. 1 (color online). Double-well trap containing N atoms.
The central barrier is lowered to allow tunneling between the
states j1i and j2i.
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with ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þ �2

p
, and its matrix elements are

conveniently written as (the star indicates the complex
conjugate)

U11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p
expði�Þ ¼ U�22;

U12 ¼ ffiffiffiffi
p
p

expði�Þ ¼ �U�21; (3)

where, with our choice of the basis, pðtÞ ¼
ð�2 þ �2Þsin2ð!tÞ=!2 is the one-particle transition proba-
bility, �ðtÞ ¼ �arctan½� tanð!tÞ=!�, and � ¼ ��=2.

For a total of N particles, we wish to evaluate the
transition probabilities pN

m0 m
ðtÞ for starting with m parti-

cles in the state j1i and ending, after a time t, with m0
particles in the same state. It is instructive to begin with a
brief discussion of the case where all particles are con-
sidered distinguishable. The problem is equivalent to a
classical N-coin one: given that each coin changes its state
with a probability p, and that m coins are initially oriented
heads up, what is the probability to have m0 heads up after
each coin has been tossed once? The result can be achieved
by moving � coins from tails to heads, and 	 coins from
heads to tails, provided ��	 ¼ m0 �m. Summing the
corresponding probabilities, while taking into account the
number of ways to choose the coins which change their
state, yields

pN
m0 m

¼ Xm

	¼0

XN�m

�¼0
Cm
	C

N�m
�

� p�þ	ð1� pÞN�	��
��	;m0�m; (4)

where Ck
l � k!

l!ðk�lÞ! is the binomial coefficient, and 
mn is

the Kronecker delta. Depending on N, m, and m0, the sum
in Eq. (4) may contain different numbers of terms, corre-
sponding to the number of ‘pathways’ connecting the
initial and final states (filled dots in Fig. 2). In the rare
events (RE) limit

N ! 1; p! w=N; (5)

it is sufficient to retain only the leading 	 ¼ 0 terms (the
lowest dot in the diagram in Fig. 2) in Eq. (4). Recalling
that CN

m � Nm=m! for large N, we obtain the expected
Poisson distribution,

lim
N!1p

N
m0 m

¼
�
wq expð�wÞ=q! q � m0 �m � 0

0 q < 0;
(6)

with intuitively appealing properties. Indeed, in the case of
a symmetric trap, � ¼ 0, reducing the transition probabil-
ity in Eq. (5) also makes the Rabi period 2�=! after which
the system must return to its initial state extremely large.
Now, for all t� 2�=!, the evolution can be considered
approximately irreversible, with the number of particles q
escaping into the right trap independent of the number of
particles m already there. The low probability of each
individual event and the much lower population in the right
well make recrossings from right to left extemely unlikely
(see Fig. 3). In particular, after detecting m particles in the
right well, one never finds it empty again, as the probability
pN
0 m (the left upper corner in the diagram in Fig. 2)

vanishes as ðw=NÞm expð�wÞ. One might expect a similar
argument to be also valid should distinct particles be
replaced with noninteracting bosons. Next we will show
that this is not the case.
For identical bosons we have a quantum version of the

N-coin problem: after a toss each coin changes its state
from jii to jji, i, j ¼ 1, 2 with the probability amplitude
Uji, and we must sum amplitudes rather than probabilities

over all pathways leading to the same final state. The state
of the system with anym coins displaying heads is given by
a symmetrized wave function

FIG. 2. A diagram showing the region of summation in
Eqs. (4) and (9) (filled dots). Each dot contributes
Cm
	C

N�m
� p�þ	ð1� pÞN�	�� for distinguishable particles, and

Cm
	C

N�m
� ð�1Þ	U�þ	

12 U
m�	
11 U

N�	�	
22 for identical bosons.

FIG. 3 (color online). Poissonian probability pN
m0 m for distin-

guishable particles, as given by Eq. (4), for N ¼ 105 and w ¼ 3.
The white line marks m ¼ m0.
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jm;Ni ¼ ðCN
mÞ�1=2

XYN

j¼1
jijij; ij ¼ 1; 2; (7)

where jiij, i ¼ 1, 2 indicates the state of jth particle. The

sum is over CN
m different ways to ascribe to m of the N

indices ij the value of 2, and to the remaining N �m ones

the value of 1. After all the coins are tossed once each
individual term in the sum of Eq. (7) contributes to the
amplitude to have m0 heads up a quantity

fðm0 m;NÞ¼ðCN
mÞ�1=2ðCN

m0 Þ�1=2

�Xm

	¼0

XN�m

�¼0
Cm
	C

N�m
� U�

12U
	
21

�U
m�	
11 UN�m��

22 
m0�m;��	; (8)

with the region of summation illustrated in Fig. 2. Since
Eq. (7) contains CN

m such terms, the probability to have m0
heads up after the toss is PN

m0 m
¼ ðCN

mÞ2jfðm0  m;NÞj2,
m,m0 ¼ 0; 1; . . . ; N, which, with the help of Eq. (3), can be

expressed in terms of the Jacobi polynomials P ð�;�Þn ðxÞ
[13–15]

PN
m0 m

¼ m!ðN �mÞ!
m0!ðN �m0Þ!p

m0�mð1� pÞN�m0þm

� jP ðN�m0�m;m0�mÞ
m ð2p� 1Þj2: (9)

As in the case of distinguishable particles, PN
m0 m

depends

only on the one-particle transition probability p, and not on
the phases � and � of the matrix elements of Uij in Eq. (3)

[16]. We note also that in the special case of tunneling into
an initially empty well, m ¼ 0, there is only one pathway
(moving exactly m particles from left to right), and the
transition probabilities for distinguishable particles and
identical bosons coincide,

PN
m0 0 ¼ pN

m0 0 ¼ CN
m0p

m0 ð1� pÞN�m0 ; (10)

as was pointed out earlier in Refs. [10,11].
More interesting, however, are the transitions affected

by the interference effects which, as we will demonstrate,
persist even in the RE limit [Eq. (5)]. Indeed, since the sum
in Eq. (8) contains

ffiffiffiffi
p
p

rather than p, the restriction to only
	 ¼ 0 terms is no longer justified. Thus, after taking the
limit [Eq. (5)], we have (q ¼ m0 �m)

lim
N!1P

N
m0 m

¼wqexpð�wÞ

�
��������

Xm

	¼max½0;�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0!m!
p ð�wÞ	

	!ðm�	Þ!ðqþ	Þ!
��������

2

: (11)

Equation (11), which is our central result [17], replaces the
classical Poisson law [Eq. (6)] for noninteracting identical
bosons. Some of its properties are counterintuitive, as is
shown in Fig. 4. Firstly, unlike the Poisson distribution
[Eq. (6)], PN

m0m of Eq. (11) is highly structured, as a result

of the interference between the pathways. Secondly, it
allows for total or partial recapture of the few particles
initially held in the right well back into the densely popu-
lated left well, contrary to the simple argument based on
the improbability of such an event.
The probability for all m bosons to cross into the left

well, PN
0 m, contains only one term in the sum [Eq. (11)]

[(	 ¼ m, � ¼ 0) in the diagram in Fig. 2],

PN
0 m ¼ wm expð�wÞ=m!: (12)

As a function of the number of recaptured atoms m, it is
the Poisson distribution shown in Fig. 5 (apparently so
ubiquitous that after having been evicted from one part
of this Letter, it immediately reappears in another, albeit in
a different context). The recapture process exhibits certain
resonancelike behavior. The number of particles most
likely to be readmitted to the left well, m 	 w, equals

0

5

10

15 0
10

20
30

40

m

w=3
N=100000

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

FIG. 4 (color online). Non-Poissonian probability PN
m0 m for

identical bosons, as given by Eq. (9), for N ¼ 105 and w ¼ 3.
The section of the surface indicated by the arrow corresponds to
PN
0 m also shown in Fig. 5.
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FIG. 5 (color online). The probability PN
0 m in Eq. (9) that all

m particles initially in the right well, m� N, N 
 1, would
cross to the left, leaving the right well empty. The solid lines are
the corresponding Poisson distributions (12).
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the mean number of distinguishable particles crossing into
the right well under the same conditions. For m> 0, there
are two interfering scenarios leading to only one particle
being left in the right well [points (	 ¼ m� 1, � ¼ 0) and
(	 ¼ m, � ¼ 1) in Fig. 2], and the corresponding proba-
bility is bimodal as shown in Fig. 4. Similarly, the proba-
bility PN

m m to retain the same number of atoms in the right
well builds up frommþ 1 interfering terms and also shows
an oscillatory pattern (see Fig. 6).

To conclude, we suggest a simple experimental setup
to test the recapture property of the bosonic distribution.
Using the available laser technology [3] one can create a
quasi-one-dimensional box trap with two strong endcap
lasers providing the potential walls shown in Fig. 1. The
box is divided in two by adding a third laser in the
middle, and the left well is populated with a large number
N of weakly interacting atoms, while, say, three atoms
are introduced into the right well. Following this, the
middle laser beam is slightly weakened to allow the
transfer of atoms between the wells. It is restored after
a time �, such that pð�Þ 	 �2�2 	 3=N, and the number
of atoms in the right well is measured, e.g., by a tech-
nique described in Ref. [18]. Then, no matter how large
N is, the well is found empty with the probability
PN
0 m 	 0:23 (cf. Fig. 5), i.e., in just under a quarter of

all cases.
In summary, it is shown that for non- or weakly interact-

ing bosons quantum interference between different scenar-
ios leading to the same final state modifies the classical
Poisson law of rare events, and leads to significant observ-
able effects not present in classical statistics.
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FIG. 6 (color online). The probabilities PN
1 m to end up with

just one atom in the right well (circles, long dashed), and PN
m m,

to leave the population of the right well unchanged (triangles,
dashed), as functions of m.
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