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Flow Reversals in Turbulent Convection via Vortex Reconnections
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We employ detailed numerical simulations to probe the mechanism of flow reversals in two-
dimensional turbulent convection. We show that the reversals occur via a vortex reconnection of two
attracting corner rolls having the same sign of vorticity, thus leading to major restructuring of the flow.
Large fluctuations in heat transport are observed during the reversal due to the flow reconfiguration. The
flow configurations during the reversals have been analyzed quantitatively using large-scale modes. Using
these tools, we also show why flow reversals occur for a restricted range of Rayleigh and Prandtl numbers.

DOI: 10.1103/PhysRevLett.110.114503

Several experiments [1-8] and numerical simulations
[8=12] on turbulent convection exhibit “flow reversals’
in which the probes near the lateral walls of the container
show random reversals (also see review articles [13]).
These reversals have certain similarities with magnetic
field reversals in dynamo and Kolmogorov flow [7].
Researchers typically study convection in a controlled
setup called Rayleigh-Bénard convection in which a fluid
confined between two plates is heated from below and
cooled at the top. The two nondimensional numbers used
to characterize the flow are the Rayleigh number (Ra),
which is the ratio of the buoyancy term and the diffusive
term, and the Prandtl number (Pr), which is the ratio of the
kinematic viscosity and the thermal diffusivity. Flow rever-
sals have been observed in many convection experiments
in a cylindrical geometry for Ra > 10® [1-4]. However, in
box geometry, flow reversals occur for a limited range of
Prandtl number, Rayleigh number, and aspect ratio [5,7,8].

Several theoretical models have been invoked to explain
flow reversals [9,14,15]. Reversals have been classified
into two categories: rotation-led reversals which occur in
a cylinder, and cessation-led reversals which occur in both
a cylinder and a box [3,8,11,12]. In cessation-led reversals,
the primary mode of the flow disappears with an emer-
gence of secondary modes during the reversals. This is
similar to the emergence of quadrupolar mode during
dynamo reversals [7].

One important question that persists is, why do flow
reversals occur in a restricted parameter regime? In this
Letter, we explain this through a quantitative investigation
of the convective flow structures for a range of parameters
using Fourier decomposition. This scheme allows for accu-
rate representation of the flow [12] and enables us to
quantify parameter regimes of reversals in terms of
Fourier mode amplitudes. In addition, we show that flow
reversals occur via vortex reconnections, and we connect
them to vortex dynamics. We also observe large fluctua-
tions in heat transport during a reversal as a result of the
flow reorganization during the event. We restrict our study
to 2D flow reversals whose flow structures are well
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represented by experiments conducted in quasi-two-
dimensional geometry [8].

We solve the equations governing Rayleigh-Bénard con-
vection under Boussinesq approximation [12] in a 2D box
of aspect ratio 1 with no-slip walls on all sides. The side
walls are insulating, while the top and the bottom conduct-
ing walls are maintained at constant temperatures. The
simulations are performed using NEKS5000 [16] that
employs the spectral element method. We use a 28 X 28
spectral element with a seventh order polynomial; thus, we
have an effective grid of 196 X 196 points. The grid den-
sity is higher at the boundaries in order to resolve the
boundary layers. We perform simulations for Pr = 1 and
Ra ranging from 10* to 10°.

To quantify the flow structures, we project the nondi-
mensionalized horizontal velocity (u), vertical velocity (v),
and temperature (7') onto the following basis:

u= Zﬁm,n sin(marx) cos(nry), (H

m,n

(v, T) = Z(ﬁm,n, T n) cos(mx) sin(nary). 2)

m,n

It has been shown that the above basis is a good represen-
tative of the flow field in a box geometry [12]. The mode
with wave number (m, n) corresponds to a flow structure
with m rolls in the x direction and 7 rolls in the y direction.
In the following discussion we will use the above basis to
analyze the mechanism of flow reversals as well as the
range of Pr and Ra for which reversals take place.

To understand the limited range of Ra and Pr for the
occurrence of reversals, we invoke the critical role played
by the “corner rolls” [represented by (m =2, n =2)
mode] in the reversal dynamics [8,12]. In particular, the
relative strength of the (2,2) mode with respect to the
dominant mode determines if a reversal will occur or not.
We observe three distinct flow structures for the range of
Ra = (10*-10°) performed in our simulations. The mode
(1,1), representing a large single role, is dominant
until Ra ~ 10° [Fig. 1(a)]. After this, the mode (1,2),
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FIG. 1 (color online).

10% < Ra < 107

Ra > 2 x 107

Steady state flow structures at different Rayleigh numbers: (a) for Ra < 103, a single roll with the dominant

(m =1, n = 1) mode, (b) for 10° = Ra = 107, two rolls stacked on top of each other corresponding to the mode (1,2), and (c) for
Ra = 2 X 107, two corner rolls with a dominant roll aligned along the 45 deg diagonal, a configuration dominated by the modes (1,1)

and (2,2).

representing two horizontally stacked rolls, dominates
until Ra = 107 [Fig. 1(b)]. The mode (2,2), which is a
dominant player for the flow reversals, is born only after
Ra =~ 2 X 107 [Fig. 1(c)], which is the reason for the
absence of reversals for lower Ra. The transition to the
reversal state is seen clearly in the bifurcation diagram
(Fig. 2). The bifurcation that leads to the birth of the
(2,2) mode and hence reversals is indicated by the vertical
dotted line in the plot. The phase space projections of the
structures at various Rayleigh numbers are quite different.
The system exhibits fixed point and quasiperiodic behavior
for Ra = 10* and 107, respectively, but it becomes chaotic
for Ra = 2 X 107, with the system jumping between the
two flow reversing states [17]. The sequence of bifurca-
tions described here is quite similar to those presented by
Paul et al. [18] for 2D convection.

In the third regime, Ra = 2 X 107, the mode 9, | grows
faster than that of the mode #,, with an increase in the
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FIG. 2 (color online). A bifurcation diagram for the modes
{(lo(1,1)]y (blue triangles), (|9(2,2)|) (green squares), and
{|9(1,2)|) (red circles) as a function of the Rayleigh number
Ra for Pr = 1. Here (-) is the temporal average. We observe that
0 = (|9(1,2)]) = 600 (left axis), while 0 =< (|9(1,1)]) = 8000
and 0 = (|9(2,2)]) = 2000 (both right axis). The system bifur-
cates to reversal states around the vertical dashed line.

Rayleigh number (see Fig. 2). Quantitatively, the averaged
value of [9,,|/|9; ;| falls monotonically from 0.45 at Ra =
2 X 107 to 0.10 at Ra = 10° [17]. The increase of ¥,
relative to U, , may be due to an inverse cascade of energy.
This result indicates that for higher Ra, the corner rolls
become weaker compared to the (1,1) mode. Therefore,
reversals are observed only for a narrow band near Ra =
2 X 107 where the (2,2) mode is sufficiently strong. We
observe similar behavior for Pr = 10 except that the (2,2)
mode appears for Ra = 10°, a value lower than that for
Pr = 1. Consequently, the range of Ra exhibiting flow
reversals is broader for Pr = 10 compared to Pr = 1, con-
sistent with the results of Sugiyama et al. [8].

Now we probe in detail the process of flow reversal by
studying the flow structures of six snapshots during one of
the reversals (see Fig. 3). A movie of the flow reversal can
be downloaded from Ref. [19]. The starting point of the
reversal is the stable configuration shown in Fig. 1(c),
corresponding to t = 0 of Fig. 4. At first, the mode (2,2)
(or the corner rolls) grows at the expense of the mode (1,1),
as evident from Figs. 3(a) and 3(b). The top-left and
bottom-right corner rolls have vorticity in the same direc-
tion; hence, they attract each other and come close due to
vortex dynamics in 2D [20]. Since the velocities of the
streamlines are directed in opposite directions, they recon-
nect, thus converting two corner rolls into a single roll
[see Fig. 3(c)]. As a result of the reconnection, the new
large roll has the cumulative vorticity in the same direction
as the reconnecting rolls. The reconnection event leads to a
change in the flow topology, and is similar to 2D magnetic
field reconnections in magnetohydrodynamics [21].
The new large roll aligned along the —45deg diagonal
[Fig. 3(c)] has vorticity opposite that of the large roll
before the reversal [Fig. 1(c)]. The process of reversal,
from the state corresponding to Fig. 1(c) to the state 3(f),
takes approximately 0.01 thermal diffusive time units
(see Fig. 4). This interval is only a fraction of time
interval between consecutive reversals, which averages to
approximately 0.6 thermal diffusive time units [12]. The
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FIG. 3 (color online). Six snapshots of the velocity and tem-
perature profiles during the reversal at ¢+ = 0.003 41 (a), 0.003 82
(b), 0.004 02 (c), 0.004 44 (d), 0.004 77 (e), 0.01 (f) in thermal
diffusive time units. The reversal process starts at = 0 with
the flow profile shown in Fig. 1(c): (a), (b) Growth of corner
rolls; (c) the two corner rolls at the upper-left and bottom-right
corners reconnect to form a large single roll. The streamlines,
represented by black curves, combine via vortex reconnections.
(d), (e) The flow reconfigures itself via rotation of the large roll
formed after the reconnection. There is a strong nonlinear
interaction among the modes (1,1), (2,2), (1,3), and (3,1) during
these events. (f) The flow stabilizes to a configuration with the
dominant roll aligned along —45 deg diagonal.

probability distribution of the time intervals between two
consecutive reversals is expected to be a Poissonian, as
seen in cessation-led reversals [3].

The strength of the new roll grows along with an emer-
gence of two new secondary modes (1,3) and (3,1), which
are generated as a result of triad interaction with the
condition k = p + q [12]. Note that (1,3) = (2,2) +
(=1,1) and (3,1) = (2,2) + (1, —1). The subsequent rota-
tion of the newly formed roll leads to the flow configura-
tions of Figs. 3(d) and 3(e), which are dominated by (1,1),
(2,2), (1,3), and (3,1) modes [17]. After around 0.01 ther-
mal diffusive time units, the system transforms to a roll
aligned along —45 deg diagonal with an opposite vorticity
[Fig. 3(f)] compared to the original one [Fig. 1(c)]. The
process would repeat for the next reversal with a difference
that the bottom-left and the top-right corner rolls would
reconnect during the next reversal.

The modes (1,1) and (2,2) are the most dominant ones,
except during reversals, with the (1,1) mode switching sign
between reversals [17]. The sign of the (2,2) mode or the
sense of rotation of the corner rolls, however, remains
unchanged after the reversal, as shown through symmetry
arguments [12]. Another surprising observation is that the
amplitude of the (2,2) mode is always positive. As a result,
the hot plume of the corner rolls (at the bottom plate)
always ascends via the vertical walls, and the cold plume
descends via the vertical walls [see Figs. 1(c) and 3(f)].

This seems to be a generic feature of many convection
simulations and experiments, but its mathematical justifi-
cation eludes us at the present.

We now discuss heat transport during a reversal. The
global Nusselt number Nu exhibits large fluctuations
including negative values during a short time interval
[see Fig. 4(a)]. Here, Nu= [[(—dT(y)/dy) + vT]dr,
where nondimensionalized 7'(y) is the averaged tempera-
ture over the cross section at height y. The negative Nusselt
number occurs for the flow configurations resembling
Fig. 3(e) in which the hot fluid parcel in the middle of
the box descends while the cold parcel ascends, contrary to
generic situations when the hot parcels ascend and the cold
ones descend. Negative Nu may appear contradictory, but
it could be understood in terms of the heat flux through
the cross section at height y, Nu(y) = —dT(y)/dy +
J,v(x, y)T(x, y)dx; here, [, is the integral over the line
at height y. We compute this quantity for various horizontal
cross sections for the flow configurations corresponding to
Figs. 3(a)-3(f). As illustrated in Fig. 4(b), Nu(y) fluctuates
significantly in the bulk for flow configurations (c, d, e)
during the reversals, with strong positive values for (d), to
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FIG. 4 (color online). (a) Time series of the global Nusselt
number. (b) Plot of Nu(y) (the normalized heat transport for the
cross section at height y) versus y during the reversal. The six
curves represent the six snapshots of Fig. 3. The flow reconfigu-
rations during the reversal lead to large fluctuations in Nu(y) in
the bulk, ranging from strong positive values for (d) to strong
negative values for (¢). Note, however, that the Nu(y) is positive
near both the plates (y — 0, 1).
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strong negative values for (¢). Note, however, that Nu(y) is
positive near the top and bottom plates for all cases. The
large fluctuations in Nu(y) in the bulk are a result of the
rotation of the central role formed after reconnection. We
remark that the negative Nu for the two-dimensional con-
vective flow is due to strong geometrical constraints faced
by the rolls during the reversals, and may not be present in
a convection experiment in a cylindrical geometry.

In summary, we show that flow reversals are caused by
vortex reconnections of two attracting rolls. The flow
reconfigurations during the reversals are due to the non-
linear interactions among the large-scale modes (1,1),
(2,2), (1,3), and (3,1). We find large fluctuations in heat
transport during the reversals, which are due to the above
restructuring of the flow. The (2,2) mode, critical for the
dynamics of flow reversals, is born after Ra = 2 X 107
(for Pr = 1), and its strength relative to the (1,1) mode
decreases monotonically afterwards. This is the reason that
flow reversals are observed only for a limited range of
parameter values.

The role of the large-scale modes described in the
present Letter is analogous to the ‘““‘cessation-led reversal”
observed in turbulent convection in cylinder [11] as well as
in dynamo reversals [7], where the quadrupolar mode
[equivalent to the (2,2) mode] dominates the dipolar
mode [equivalent to the (1,1) mode] during the reversal.
Future work for different geometries, and Prandtl and
Rayleigh numbers, would provide valuable insights that
will help us build a comprehensive theory of reversals in
convection and dynamo.
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