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We present the results of a numerical search for periodic orbits of three equal masses moving in a plane

under the influence of Newtonian gravity, with zero angular momentum. A topological method is used to

classify periodic three-body orbits into families, which fall into four classes, with all three previously

known families belonging to one class. The classes are defined by the orbits’ geometric and algebraic

symmetries. In each class we present a few orbits’ initial conditions, 15 in all; 13 of these correspond to

distinct orbits.
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After Bruns showed that there are 18 degrees of freedom
but only 10 integrals of motion in the dynamics of three
Newtonian bodies, late in the nineteenth century [1], it has
been clear that the three-body problem can not be solved in
the same sense as the two-body one. That realization led
to Poincaré’s famous dictum [2] ‘‘. . . what makes these
(periodic) solutions so precious to us, is that they are, so to
say, the only opening through which we can try to penetrate
in a place which, up to now, was supposed to be
inaccessible.’’Consequently (new) periodic three-body so-
lutions have been sought ever since, though a significant
number were found only after 1975. They may be classified
in three families: (1) the Lagrange-Euler one, dating back
to the eighteenth century analytical solutions, supple-
mented by one recent orbit due to Moore [3], (2) the
Broucke-Hadjidemetriou-Henon family, dating to the
mid-1970s [4–9], with periodic rediscoveries of certain
members of this family [3,10], and (3) the Figure-8 family
discovered by Moore in 1993 [3], rediscovered in 2000
[11], and extended to the rotating case [12–17], (see also
Ref. [18] and the gallery of orbits in Ref. [19]).

The aforementioned rediscoveries raise the issue of
proper identification and classification of periodic three-
body trajectories. Moore [3] used braids drawn out by the
three particles’ trajectories in 2þ 1 dimensional space-
time [20] to label periodic solutions. This method does
not associate a periodic orbit with a single braid, however,
but with the ‘‘conjugacy class’’ of a braid group element,
i.e., with all cyclic permutations of the strand crossings
constituting a particular braid. While reasonably effective
for the identification of individual orbits, braids are less
efficient at classifying orbits into families.

Montgomery [21] suggested using the topological prop-
erties of trajectories on the so-called shape-space sphere
[22] to classify families of three-body orbits. That method
led Chenciner and Montgomery to their rediscovery of the
figure-8 orbit [11] and informed the present study. No
solutions belonging to new topological classes ‘‘higher’’
than the figure-8 one have been found in Newtonian gravity
since then, however.

Here we report the results of our ongoing numerical
search for periodic collisionless planar solutions with
zero angular momentum in a two-parameter subspace of
(the full four-dimensional space of) scaled zero-angular-
momentum initial conditions. This subspace is defined as
that of collinear configurations with one body exactly in
the middle between the other two, with vanishing angular
momentum and vanishing time derivative of the hyper-
radius at the initial time. At first we found around 50
different regions containing candidates for periodic orbits,
at return proximity of 10�1 in the phase space, in this
section of the initial conditions space. Then, we refined
these initial conditions to the level of return proximity of
less then <10�6 by using the gradient descent method.
Here we present 15 solutions, which can be classified into
13 topologically distinct families. This is because two pairs
of initial conditions specify only two independent solu-
tions, as the respective members of the pairs are related by
a simple rescaling of space and time. Before describing
these orbits and their families we must specify the topo-
logical classification method more closely.
Montgomery [21] noticed the connection between the

‘‘fundamental group of a two sphere with three punctures,’’
i.e., the ‘‘free group on two letters’’ (a, b), and the conju-
gacy classes of the ‘‘projective colored or pure braid
group’’of three strands PB3. Graphically, this method
amounts to classifying closed curves according to their
topologies on a sphere with three punctures. A stereo-
graphic projection of this sphere onto a plane, using one
of the punctures as the ‘‘north pole’’ effectively removes
that puncture to infinity, and reduces the problem to one of
classifying closed curves in a plane with two punctures.
That leads to the aforementioned free group on two letters
(a, b), where (for definiteness) a denotes a clockwise full
turn around the right-hand-side puncture, and b denotes the
counterclockwise full turn around the other puncture; see
Ref. [18]. For better legibility we denote their inverses by
capitalized letters a�1 ¼ A, b�1 ¼ B. Each family of orbits
is associated with the conjugacy class of a free group
element. For example, the conjugacy class of the free group
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element aB contains AðaBÞa ¼ Ba. To appreciate the util-
ity of this classification one must first identify the two
sphere with three punctures with the shape-space sphere
and the three two-body collision points with the punctures.

With two three-body Jacobi relative coordinate vectors,
� ¼ 1

ffiffi

2
p ðx1 � x2Þ, � ¼ 1

ffiffi

6
p ðx1 þ x2 � 2x3Þ, there are three

independent scalar three-body variables, i.e., � � �, �2, and
�2. Thus the ‘‘internal configuration space’’ of the planar
three-body problem is three dimensional. The hyper-radius

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p

defines the overall size of the system and
removes one of the three linear combinations of scalar
variables. Thus, one may relate the three scalars to a
(unit) hyperspace three-vector n̂ with the Cartesian

components n0x ¼ 2���
R2 , n0y ¼ 2���

R2 and n0z ¼ �2��2

R2 . The

domain of these three-body variables is a sphere with
unit radius [22]; see Ref. [18] and Fig. 1(a). The equatorial
circle corresponds to collinear configurations (degenerate
triangles) and the three points on it correspond to the two-
body collisions (these are Montgomery’s ‘‘punctures’’).

If one disallows collisions in a periodic orbit, then the
orbit’s trajectory on the sphere cannot be continuously
stretched over any one of these three punctures, and the
orbit’s characteristic conjugacy class is thereby fixed; in
this sense the topology characterizes the orbit. Thus, peri-
odic solutions belonging to a single collisionless family are
topologically equivalent closed curves on the shape-space
sphere with three punctures in it. For example, the three

previously known families of orbits in shape space are
shown in Ref. [18].
One may divide the orbits into two types according to

their symmetries in the shape space: (I) thosewith reflection
symmetries about two orthogonal axes—the equator and
the zeroth meridian passing through the ‘‘far’’ collision
point; and (II) those with a central reflection symmetry
about a single point—the intersection of the equator and
the aforementioned zeroth meridian. Similarly, one may
divide the orbits according to algebraic exchange symme-
tries of (conjugacy classes of) their free group elements: (A)
with free group elements that are symmetric under a $ A
and b $ B, (B) with free group elements symmetric under
a $ b andA $ B, and (C) with free group elements that are
not symmetric under either of the two symmetries (A) or
(B). We have observed empirically that, for all presently
known orbits, the algebraic symmetry class (A) always
corresponds to the geometric class (I), and that the algebraic
class (C) always corresponds to the geometric class (II),
whereas the algebraic class (B) may fall into either of the
two geometric classes. The first examples, to our knowl-
edge, of higher topology trajectories on the shape-space
sphere are the two (new) zero-angular-momentum periodic
solutions reported in Ref. [23], albeit in a different (the so-
called Y-string) potential. Herewe show only the new orbits
in Newtonian gravity.
(I.A) As new members of this class, we present three

orbits in Table I: butterflies I & II and the bumblebee. We

FIG. 1 (color online). The (translucent) shape-space sphere, with its back side also visible here. Three two-body collision points
(bold red circles)—punctures in the sphere—lie on the equator. (a) The solid black line encircling the shape sphere twice is the figure-8
orbit. (b) Class I.A butterfly I orbit (I.A.1). Note the two reflection symmetry axes. (c) Class I.B moth I orbit (I.B.1) on the shape-space
sphere. Note the two reflection symmetry axes. (d) Class II.B yarn orbit (II.B.1) on the shape-space sphere. Note the single-point
reflection symmetry. (e) Class II.C yin-yang I orbit (II.C.2) on the shape-space sphere. Note the single-point reflection symmetry.
(f) An illustration of a real space orbit, the yin-yang II orbit (II.C.3a).
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show butterfly I in Fig. 1(b). The butterfly’s free group
element is ðabÞ2ðABÞ2. Note its close relation to the figure-
8 orbit’s free group element ðabÞðABÞ—both orbits belong
to this class. We have found two distinct butterfly orbits
with the same topology (see Table I) but with different
periods and sizes of trajectories, both on the shape sphere
and in real space; see Ref. [18]. This kind of multiplicity of
solutions is not the first one of its kind: there are two (very
similar in appearance, yet distinct) kinds of figure-8 [14].

(I.B) An example of this class of solutions is the moth I
orbit, shown in Fig. 1(c). We have found a number of other
solutions that belong to this class of solutions with visibly
different geometrical patterns on the shape sphere and
different free group elements; see Table I and Ref. [18].

(II.B) An example of this class of solutions with alge-
braic symmetry (B), but with only a central geometric
symmetry, is the yarn orbit (II.B.1), shown in Fig. 1(d).

(II.C) An example of this class without algebraic sym-
metries is the simplest zero-angular-momentum yin-yang I
orbit (II.C.2), shown in Fig. 1(e). There are two different
sets of initial conditions (see Table I) that lead to the same
yin-yang orbit in shape space, due to the fact that this
trajectory crosses the initial configuration on the shape-
space sphere twice in one period, albeit with different
velocities. Therefore the two sets of initial conditions
have different energies, so that their periods are different,
yet both correspond to the same orbit, modulo rescaling of
the space and time; see Ref. [7]. We have found four sets of
initial conditions (see Table I) corresponding to two

distinct (i.e., having different free group elements)
solutions that belong to this (yin-yang) general class. All
yin-yang orbits seem to emerge from a single quasi-one-
dimensional periodic orbit with collisions [18], very much
like the Broucke-Hadjidemetriou-Henon ones emerge
from the Schubart (colliding) orbit [24].
In conclusion, we have shown 13 new, distinct equal

mass, zero-angular-momentum, planar collisionless peri-
odic three-body orbits that can be classified in three new
(and one old) classes. If the figure-8 orbit and its family can
be used as a benchmark, then we expect each of the new
orbits to define a family of periodic solutions with nonzero
angular momentum. We expect our solutions to be either
stable or marginally unstable, as otherwise they probably
would not have been found by the present method.
No three objects with equal masses and zero angular

momentum have been found by observational astronomers,
as yet, so our solutions cannot be directly compared with
observed data [25]. Most of the three-body systems iden-
tified in observations thus far belong either to the
Lagrange-Euler class, or to the quasi-Keplerian Broucke-
Hadjidemetriou-Henon class of solutions.
Besides obvious questions, such as the study of stability,

and the search for the associated nonzero-angular-
momentum solutions, there are other directions for future
research, such as the nonequal mass solutions [27], the
general-relativistic extensions of these orbits [28], as well
as the gravitational wave patterns that they generate
[29,30].

TABLE I. Initial conditions and periods of three-body orbits. _x1ð0Þ, _y1ð0Þ are the first particle’s initial velocities in the x and y
directions, respectively, T is the period. The other two particles’ initial conditions are specified by these two parameters, as follows:
x1ð0Þ ¼ �x2ð0Þ ¼ �1, x3ð0Þ ¼ 0, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0, _x2ð0Þ ¼ _x1ð0Þ, _x3ð0Þ ¼ �2 _x1ð0Þ, _y2ð0Þ ¼ _y1ð0Þ, _y3ð0Þ ¼ �2 _y1ð0Þ. The
Newton’s gravity coupling constant G is taken as G ¼ 1 and equal masses as m1;2;3 ¼ 1. All solutions have ‘‘inversion partners’’

(mirror images) in all four quadrants; i.e., if _x1ð0Þ, _y1ð0Þ is a solution, so are � _x1ð0Þ, � _y1ð0Þ. Some of these partners are exactly
identical to the originals, others are identical up to time reversal, and yet others are related to the originals by a reflection; we consider
all of them to be physically equivalent to the originals. Note that two pairs of initial conditions in the same quadrant (II.C.2a and
II.C.2b, and II.C.3a and II.C.3b) specify only two independent solutions; see the text for explanation.

Class, number, and name _x1ð0Þ _y1ð0Þ T Free group element

I.A.1 butterfly I 0.30689 0.12551 6.2356 ðabÞ2ðABÞ2
I.A.2 butterfly II 0.39295 0.09758 7.0039 ðabÞ2ðABÞ2
I.A.3 bumblebee 0.18428 0.58719 63.5345 ðb2ðABabÞ2A2ðbaBAÞ2baÞðB2ðabABÞ2a2ðBAbaÞ2BAÞ
I.B.1 moth I 0.46444 0.39606 14.8939 baðBABÞabðABAÞ
I.B.2 moth II 0.43917 0.45297 28.6703 ðabABÞ2AðbaBAÞ2B
I.B.3 butterfly III 0.40592 0.23016 13.8658 ðabÞ2ðABAÞðbaÞ2ðBABÞ
I.B.4 moth III 0.38344 0.37736 25.8406 ðbabABAÞ2aðabaBABÞ2b
I.B.5 goggles 0.08330 0.12789 10.4668 ðabÞ2ABBAðbaÞ2BAAB
I.B.6 butterfly IV 0.350112 0.07934 79.4759 ððabÞ2ðABÞ2Þ6AððbaÞ2ðBAÞ2Þ6B
I.B.7 dragonfly 0.08058 0.58884 21.2710 ðb2ðABabABÞÞða2ðBAbaBAÞÞ
II.B.1 yarn 0.55906 0.34919 55.5018 ðbabABabaBAÞ3
II.C.2a yin-yang I 0.51394 0.30474 17.3284 ðabÞ2ðABAÞbaðBABÞ
II.C.2b yin-yang I 0.28270 0.32721 10.9626 ðabÞ2ðABAÞbaðBABÞ
II.C.3a yin-yang II 0.41682 0.33033 55.7898 ðabaBABÞ3ðabaBAbabÞðABAbabÞ3ðABÞ2
II.C.3b yin-yang II 0.41734 0.31310 54.2076 ðabaBABÞ3ðabaBAbabÞðABAbabÞ3ðABÞ2
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Having searched in only one two-dimensional section of
the full four-dimensional space of initial conditions, we
expect other types of orbits to appear, (single members of
which have already been seen, e.g., the goggles (I.B.5) and
the dragonfly (I.B.7) orbits in Table I), in different sections
of the full space of initial conditions. Last, but not least,
new numerical solutions in the Newtonian potential may
lead to new analytical solutions, for example, of the kind
found in Ref. [31] after the numerical discovery of the
figure-8 orbit, albeit in the�1=r2 potential. Thus, our work
may shed further light on the three-body problem.
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