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We discuss the potential of multilayered plasmonic particles to tailor the optical scattering response.

The interplay of plasmons localized in thin stacked shells realizes peculiar degenerate cloaking and

resonant states occurring at arbitrarily close frequencies. These concepts are applied to realize ultrasharp

comblike scattering responses and synthesize staggered, ideally strong superscattering states closely

coupled to invisible states. We demonstrate robustness to material losses and to variations in the

background medium, properties that make these structures ideal for optical tagging.
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Increased interest in sensing, optical imaging or tagging,
and energy harvesting at the nanoscale has recently fos-
tered significant research efforts on enhanced scattering
and absorption properties from nanoparticles and, more in
general, on the capability of engineering their scattering
and absorption spectra at will. Plasmonic nanostructures
[1] are particularly well suited for this purpose, because of
their unprecedented control and large enhancement of
light-matter interaction and the associated strong and lo-
calized resonant effects, enabling new and anomalous
optical phenomena [2]. In addition to resonant scattering,
a notable example of anomalous response from small
particles may be obtained with plasmonic cloaks [3].
These covers can dramatically reduce the total scattering
cross section (SCS) of moderately sized objects through a
scattering cancellation mechanism based on their local
negative polarizability. The concept has been also extended
to multifrequency operation by considering multiple plas-
monic layers [4,5], which provide further degrees of free-
dom. In this configuration, complex scattering signatures
may be achieved because of the complex interaction
among multiple plasmon modes. In this context, it was
proven [5] that, for any passive scatterer, a resonant scat-
tering peak always exists between two zeros of any scat-
tering order. This fact is an unavoidable constraint of
causality and passivity, and it may be considered the
scattering equivalent of Foster’s reactance theorem in
circuit theory [6]. In other words, a zero (cloaked state)
in the scattering response is generally followed by a pole
(resonant state) before a new zero occurs along the
frequency axis.

In the context of cloaking, this inherent property intrinsi-
cally limits the overall achievable bandwidth. However, in
a more general scenario this same property may be
exploited to our advantage, providing unexplored flexibil-
ity to engineer the scattering signature of a composite
object. The location of alternating zeros and poles in the
scattering spectrum obviously depends on the geometry
and material properties of the scattering object, and it can

be tailored to a very large degree. We have used this idea to
realize a degenerate state between cloaking and resonant
scattering [7], resulting in an asymmetric signature analo-
gous to a Fano resonance [8–10]. In this Letter we apply
this concept to further enrich the scattering spectrum of
small nanoparticles, producing a complex frequency dis-
persion that leads to new functionalities. We show that a
single, isotropic and center-symmetric scatterer with sub-
wavelength size can in principle realize multiple Fano-like
resonances staggered arbitrarily close along the frequency
axis, obtaining a peculiar Fano-comb frequency response
with combined ideal superscattering and cloaking features.
This ability may open exciting possibilities for several
applications, ranging from sensing to spectroscopy
[11–13] and optical tagging.
Scattering from a concentric multilayered spherical

system can be analyzed with Mie theory [14,15]. Using
the notation of Ref. [3] and assuming an e�i!t time con-
vention, the TM scattering coefficient of order n may
be written as cTMn ¼ �UTM

n =ðUTM
n þ iVTM

n Þ where the
quantities UTM

n , VTM
n are obtained by solving appropriate

2ðN þ 1Þ � 2ðN þ 1Þ determinants [15], where N is the
number of concentric layers surrounding a dielectric core
(for further details see Ref. [16]). TE coefficients can be
easily computed using duality. In the long-wavelength
regime, where dipolar scattering dominates (n ¼ 1), the
complex wave interaction with multilayered plasmonic
scatterers can be understood by analyzing the quasistatic
dispersion conditions for cloaking, UTM

1 ¼ 0, and resonant
scattering, VTM

1 ¼ 0. In order to quantitatively understand
the potential offered by a multilayered plasmonic scatterer,
consider a composite nanoparticle with geometry depicted
in the inset of Fig. 1(a). A dielectric core with radius
a ¼ 150 nm and permittivity " ¼ 10"0 is surrounded by
N ¼ 4 plasmonic layers with the same thickness and a
linearly modulated plasma frequency; i.e., the plasma fre-
quency of two consecutive layers differs by a fixed quantity
�!p, corresponding to a difference in permittivity �"c at

a given frequency. This may be realized, for instance, by
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gradually varying the doping level in a semiconductor, as
discussed below. Under these assumptions, the geometry of
the structure is determined once the aspect ratio �c1 ¼
a=ac1, the permittivity "c1 of the first plasmonic shell, and
�"c are chosen. The contours in Fig. 1(a) show the dy-
namic total SCS of the composite nanoparticle as a func-
tion of its aspect ratio and permittivity of the first layer,
assuming�"c ¼ �0:15. Red and blue curves highlight the
quasistatic dispersion of resonance and cloaking condi-
tions for dipolar scattering.

It can be generally shown that, for any fixed value of
�c1, the quasistatic dispersion equations UTM

1 ¼ 0 and

VTM
1 ¼ 0 each admit N þ 1 solutions for "c1, equal to

the number of spherical interfaces in the composite parti-
cle. This is related to the fact that each surface plasmon
localized at an interface is responsible for a cloaking-
resonance, scattering dip-peak, pair. In our scenario,
N þ 1 ¼ 5 cloaking and resonant branches are available,
of which only four are visible in Fig. 1(b), since the last

pair occurs for larger negative values of "c1. As discussed
in the following, when the layers have similar plasma
frequencies as in Fig. 1, the required alternation between
cloaking and resonant states implies that several branches
concentrate in the region "c1 � 0. In this case, cloaking
and resonant conditions merge for very thin (�c1 � 1) and
thick (�c1 � 0) shells, and the dual phenomena of cloaking
and resonant scattering strongly interfere within the same
particle.
To give an example of a practical implementation of

the proposed concept, we assume that the plasmonic layers
are made of aluminum-doped zinc oxide semiconductors
[16–18], whose frequency dispersion is modeled with a
lossless Drude model "c1 ¼ "0ð"1 �!2

p=!
2Þ with "1 ¼

3:3. The plasma frequency may be tailored by the doping
level and we assume it as !p ¼ 2213:2 THz [18] for the

first layer, with �!p ¼ 0:015 !p for the other shells.

In order to intercept the region where branches merge in
Fig. 1, we choose a high aspect ratio �c1 ¼ 0:95, corre-
sponding to the horizontal dashed arrow in Fig. 1(a).
Kramers-Kronig relations require that permittivity
decreases with wavelength in low-loss regions [19], as
indicated by the arrow, confirming that, as we change the
wavelength of operation, zeros and poles necessarily alter-
nate. In the geometry considered here, the sequence of
intercepted zeros and poles translates into a peculiar comb-
like scattering signature, shown in Fig. 1(b) (red line). Each
Roman numeral in the two panels corresponds to a specific
cloaking or resonant state. Three closely spaced ultranar-
row resonant peaks and dips appear around the wavelength
of 1500 nm, with huge excursions (more than 30 dB) over a
narrow bandwidth. These features are produced by a stack
of Fano resonances in which cloaking states act as sub-
radiant dark modes of the system. In the points where the
dispersion curves in Fig. 1(a) get close, the interaction of a
dark cloaking state with a bright resonant mode produces a
dipole-dipole Fano-like feature [7,20,21], which is much
sharper than conventional dipolar plasmonic resonances
[peak I in Fig. 1(b)] and provides several advantages
compared to the conventional Fano response [7].
Although the scattering is dominated by the dipolar

response, the scattering peaks in Fig. 1(b) are more pro-
nounced than conventional dipolar resonances, because of
the contribution of a second-order (quadrupolar) plasmonic
resonance aligned with the dipolar peaks [this is particu-
larly evident in point I of Fig. 1(b), red line, but it holds true
for all resonance peaks]. We prove in the following that this
is an important by-product of the proposed configuration,
which automatically supports staggered superscattering
resonances [22]. Next, we introduce realistic losses in the
Drude model of each layer, with a collision frequency � ¼
2� 10�3!p [black line in Fig. 1(b)]. Absorption affects

the total scattering excursion in the comb, as expected, but
it preserves the comblike signature. While the quadrupolar
contribution is strongly attenuated by losses, the dipolar

FIG. 1 (color online). (a) Total SCS as a function of �c1 and
"c1 for the multilayered particle shown in the inset, assuming
" ¼ 10"0, a ¼ 150 nm, and �"c ¼ �0:15. The black dashed
arrow indicates a wavelength increase for fixed particle geome-
try, corresponding to panel (b). (b) Scattering spectrum against
wavelength for �c1 ¼ 0:95, for lossless (red solid) and lossy
layers (black solid) and a homogeneous dielectric particle of
same size (blue dashed). Roman numbers identify the different
resonant peaks and cloaking dips intercepted when changing the
wavelength in (a), reflected in the scattering spectrum in (b).
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comb response is robustly preserved and the inverse band-
width of the staggered Fano-like resonances corresponds to
an effective quality factor over ten times larger than an
isolated dipolar resonance.

The remarkably different response of the composite
nanoparticle at the peaks and dips of the comb is not
only evident in its total SCS, but also in the near-field
distribution. In Figs. 2(a) and 2(b), we show the electric
field in the E plane (time snapshots of the component
parallel to the impinging field) for the particle of Fig. 1
at the cloaking dip IVand the resonant peak V, respectively.
The near-field undergoes dramatic modifications in this
very narrow frequency range. At the resonant peak � ¼
1511 nm, enhanced resonant fields are confined at the
interface between two specific plasmonic layers, and the
impinging wave is strongly perturbed around the resonant
nanoparticle [Fig. 2(b)]. The inset shows a detail of the
field amplitude distribution, demonstrating very strong
field localization in one of the shells. We have verified
that each peak in the comb corresponds to the ‘‘activation’’
of a specific interface of the plasmonic cloak. The power
flow around the nanoparticle (time-average Poynting vec-
tor) is represented as white streamlines and follows com-
plex paths characterized by optical vortices and saddle
points [23,24]. The nearest cloaking dip occurs at a wave-
length just 5 nm longer, and the field distribution is dra-
matically modified [Fig. 2(a)], as the scattering is almost
totally canceled. The extreme proximity in frequency of
these very different scattering states ensures a sharp and
deep variation between the ‘‘on’’ and ‘‘off’’ states of the
frequency comb, which is ideal for applications that
require high selectivity between adjacent channels.

For these applications, it is of paramount importance to
understand the sensitivity or robustness of this phenome-
non to different design parameters. In particular, if tagging
applications are envisioned (e.g., multicolor labeling in
optical imaging of biological tissues [25]), the sharp reso-
nances should be robust to variations in the background

permittivity "b. This is possible to assess by analyzing the
quasi-static dispersion relations for cloaking UTM

n ¼ 0 and
resonant scattering VTM

n ¼ 0 [16]. For N plasmonic layers,
the general solutions do not have a simple analytical form
and the best way to visualize them is a graphical represen-
tation as in Fig. 1(a). Nevertheless, if we are interested in
specific regions of the parameter space, simple analytical
formulas may be derived. Letting the aspect ratio �c1

approach unity (the limit of thin plasmonic shells, as in
our example), the dispersion equation for arbitrary nth TM
resonance (VTM

n ¼ 0) may be written in the simple form

�
"þ nþ 1

n
"b

� YN
m¼0

ð"c1 þm�"cÞ ¼ 0 (1)

and for cloaking (UTM
n ¼ 0)

ð"� "bÞ
YN
m¼0

ð"c1 þm�"cÞ ¼ 0: (2)

Each dispersion equation evidently admits N þ 1 quasi-
static solutions, of which one is independent of the shell
properties [first factor in Eqs. (1) and (2)] and corresponds
to resonance and cloaking conditions of a homogeneous
particle without cover. Conversely, the other terms in (1)
and (2) only depend on the plasmonic shells. Since these
are common factors in the two equations, in this limit of
ultrathin shells they correspond to N degenerate cloaking-
resonant states, which can be seen in the diagram of
Fig. 1(a) at �c1 � 1. Each of these solutions corresponds
to an ultranarrow Fano resonance occurring exactly at the
plasma frequency (zero permittivity) of the particular layer
that gets activated, as shown in the inset of Fig. 2(b). These
degenerate states are completely independent of the core
permittivity and the background medium. In addition, this
result is surprisingly independent of n, implying that, in the
limit of thin layers, each resonant peak in the comb sup-
ports the superposition of all scattering orders at resonance
at the same frequency, and each scattering dip represents a
true cloaked state, in which all scattering orders are sup-
pressed at the same frequency. In other words, the upper
and lower limits on scattering excursion in the comb are in
principle unlimited in the ideal lossless scenario, as all
scattering orders resonate and get suppressed under the
same condition. When losses are considered, larger-n har-
monics get more affected, but staggered superscattering
and invisible states may be still realistically achieved.
If we consider the opposite extreme �c1 approaching

zero (small core, compared to the plasmonic layers),
the dispersion relation for resonant scattering may be
written as

�
"þ nþ 1

n
"c1

�
fnð"c1;�"c; "bÞ ¼ 0 (3)

and for cloaking,

FIG. 2 (color online). Electric field distribution in the E plane
(snapshot in time), for the multilayered particle of Fig. 1 at the
cloaking dip IV (a) and the resonant peak V (b). The power flow
(time-average Poynting vector) is shown with white stream lines.
The inset in (b) shows the electric field amplitude in the quadrant
indicated by the black dashed square.
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�
"þ nþ 1

n
"c1

�
gnð"c1;�"c; "bÞ ¼ 0; (4)

where fn and gn are two analytic functions. The dispersion
equations have a common degenerate solution at "c1 ¼
� n

nþ1", corresponding to a Fano resonance that depends

only on the core and the first plasmonic layer, sustained by
the plasmon mode localized at the inner interface. Its
sensitivity to the core permittivity combined with non-
linear effects has been exploited in Ref. [7] to realize giant
all-optical scattering switches. In our scenario the situation
is much richer: equations fnð"c1;�"c; "bÞ ¼ 0 and
gnð"c1;�"c; "bÞ ¼ 0 admit N additional solutions for
"c1, which are in general nondegenerate cloaking and
scattering conditions. Although these solutions do not
have a simple general form, after expanding them in
a Taylor series for small values of �"c we gain additional
insights into the comb signature. In this case, we find
again that a solution of each equation lies far away, as in
Fig. 1(a), and is not of interest for our purposes. The
remaining N � 1 solutions, however, may be written in
the form "c1 ’ xn�"c, where xn is a proportionality factor
that coincides for cloaking and resonant scattering. In the
limit of small �"c they form quasidegenerate states corre-
sponding to the three ‘‘internal’’ branches of Fig. 1(a). The
continuity of these branches and their necessary alternation
ensures that a comb feature arises for any aspect ratio in the
limit �"c ! 0, essentially independent of the background
medium. In Figs. 3(a) and 3(b), we numerically demon-
strate the inherent robustness of this phenomenon by vary-
ing the background and core permittivity, respectively.
Consistent with the previous analysis, the comb is com-
pletely insensitive to large variations in the background
material, whereas the ‘‘external’’ scattering features
strongly depend on it. Interestingly, the overall response
is also unaffected by the core permittivity.

This peculiar robustness of the scattering signature is
further discussed in Ref. [16], and it appears perfectly
suited for optical tagging. In fact, the spectrum locally
assumes a ‘‘digitized’’ regular shape that can be used to
robustly encode bits of information in the structure by
tuning the plasma frequency of each layer. This concept
is sketched in Fig. 4(a): if a light beam is shone on a
nanotag composed of our multilayered nanoparticle, the
scattered spectrum will be similar to the one in Fig. 1(b).
Scattered light can be collected by a photodetector and
processed. Now, imagine identifying a fixed narrow ‘‘win-
dow’’ of L ¼ 3 frequency channels or bits in our photode-
tector, as indicated in panels (b), (c) and (d) of Fig. 4. The
tag identity will be determined by overlapping the comb-
like scattering spectrum with the L channels. By tuning the
plasma frequencies of the plasmonic layers, it is possible to
record the desired code by aligning poles or zeros in the tag
windows, hence encoding the identity of up to 2L different
tags. This scheme provides a concept example on how the
rich scattering spectrum of multilayered plasmonic

particles may be used for optical tagging, similar to
radio-frequency identification tags. The information is
effectively encoded in deeply subwavelength nano-objects
and it is possible to read it by means of a scattering
measurement. In a practical scenario, we would encode
the nanotag at the time of fabrication, and the specific
comb signature will hold without being affected by the
surrounding environment, allowing efficient encoding and
easy detection, particularly interesting to realize nano-bio-
markers.
In this Letter, we have shown that a peculiar Fano-comb

scattering spectrum can be realized with isotropic
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FIG. 3 (color online). Sensitivity of the scattering spectrum to
the background medium (a) and the core permittivity (b) for a
multilayered nanoparticle as in Fig. 1.

FIG. 4 (color online). (a) Schematic representation of optical
tag reading. (b), (c), (d) Three examples of optical nanotags: by
changing the plasma frequency of the plasmonic layers, it is
possible to encode different sequences of bits. The reading
window (black boxes) is fixed and by overlapping it with the
comblike scattering response we determine the tag identity.
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multilayered plasmonic nanoparticles. A practical design
at infrared frequencies has been proposed based on thin
aluminum-doped zinc oxide plasmonic layers, whose
plasma frequency may be controlled with the doping level.
We envision fabrication of these multilayered shells with a
variety of nanofabrication techniques, including nanoskiv-
ing [26] a multilayered semiconductor material with a
gradient of doping level. In a reciprocal configuration,
these multilayered shells may be also exploited to tailor
the emission or radiation from confined optical sources, as
explored using a different approach at lower frequencies in
Ref. [27]. The proposed nanoparticles may also be
arranged in planar arrays, whose reflection and transmis-
sion coefficients would show a similar comblike signature,
realizing thin metasurfaces for optical filtering, sensing,
and tagging. As an example, we show in Ref. [16] the
response of a periodic array of Fano-comb particles for
different periods of the square lattice. The dipolar nature of
these scattering features provides many advantages,
including reasonable robustness to realistic material losses.
In addition, the comb response automatically realizes stag-
gered superscattering resonances, which are difficultly
realized in conventional plasmonic nanoparticles [22].

The scattering behavior described in this Letter is com-
pletely scalable in frequency, provided that plasmonic
materials with a controllable plasma frequency are avail-
able or realizable in the considered frequency range.
Because of the great design flexibility and the possibility
to tailor exotic scattering features, we believe that the
realization of Fano-comb particles may provide crucial
benefits for several applications, such as improving the
resolution in comb-spectroscopy techniques and producing
efficient optical tagging biomedical devices. Including
nonlinearities in the shells or core material may further
extend the impact of this concept, providing dynamic
tunability and switching effects.
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