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We develop a framework for solving the action of a three-channel passive optical interferometer on

single-photon pulse inputs to each channel using SU(3) group-theoretic methods, which can be readily

generalized to higher-order photon-coincidence experiments. We show that features of the coincidence

plots versus relative time delays of photons yield information about permanents, immanants, and

determinants of the interferometer SU(3) matrix.
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An optical interferometer is a coherent scatterer of light
comprising passive optical elements such as phase shifters,
mirrors, and beam splitters. The interferometer operates in
the quantum regime by injecting nonclassical light into the
input ports and yields nonclassical light from the output
ports. The most famous quantum optical effect is the
two-photon Hong-Ou-Mandel dip [1], with the ‘‘dip’’ cor-
responding to extinction of photon coincidences at the two
output ports of a balanced beam splitter given two identical
input photons at each input port. Instead, the two photons
exit in a superposition state of leaving together from each
of the two output ports. Important applications include
characterizing distinguishability between pairs of indepen-
dent photons [2], measuring coherence [3] and purity [4] of
single photons, producing two-photon entanglement [5],
performing dense coding [6] and single-qubit quantum
fingerprinting [7], and creating nondeterministic nonlinear
gates in optical quantum computing [8].

Generalizing to higher-order photon-coincidence dips
will be valuable in many ways including determining dis-
tinguishability between multiple photons simultaneously,
computing the permanent of special unitary (SU) matrices
through photon coincidence dips [9], and sampling perma-
nents of submatrices of SU matrices to demonstrate that
boson sampling is probably hard for a classical computer
[10]. Experimentally, eight individual photons have been
manipulated with exquisite control [11], temporal distin-
guishability of four- and six-photon states have been char-
acterized [12], and three photons in two and three coupled
interferometers have shown nonclassical interference
[13,14], so higher-order photon coincidence dips are fea-
sible well beyond the two-photon two-channel case.
Although coherent scattering of Fock states has been ana-
lyzed theoretically for various instances of interferometers
[15,16] and even a zero-transmission condition for 2N-port
devices [17], a full multimode analysis of multicha-
nnel interferometry incorporating realistic source and dete-
ctor spectral responses [18] but allowing for arbitrary

configurations has not yet been fully studied despite its
necessity for quantitative studies of these nonclassical
interferometric systems.
Here we highlight the rich group theoretical structure of

photon interferometry and its direct relationship to permu-
tation symmetries and associated matrix functions by ana-
lyzing the problem of photon coincidence probabilities at
the output of any passive three-channel interferometer
[whose action is represented by the SU(3) matrix] acting
on single-photon pulse inputs. Such an approach was pio-
neered by Campos et al. in a four-port result [19] for SU(2)
interferometers. Our approach creates a pathway for dis-
cussing matrix functions in arbitrary n-mode interferome-
ters beyond the case of three modes reported here. Our goal
is to to develop a full realistic theory for photon coinci-
dences that necessarily accommodates multimode photon
pulses, multimode detection, and photon delays.
Input photons can reach the detectors by various paths. If

the amplitudes and phases of these paths interfere destruc-
tively, a coincidence dip occurs; if all paths exactly cancel
out as a result of suitably chosen amplitudes and phases, a
complete dip occurs. The contribution to the coincidence
rate of photons with different frequencies is related by
permutation symmetries. These contributions enter into
our expressions as weighted contributions of the imman-
ants, including the permanent as a special case, to the
coincidence rate.
A single-photon pulse with light-source spectral func-

tion ~�Sð!Þ in one spatial mode, or channel, is

j1iS ¼
Z

d! ~�Sð!Þj1ð!ÞÞ;
Z

d!j ~�Sð!Þj2 ¼ 1 (1)

for j1ð!ÞÞ� âyð!Þj0i with âð!Þ the creation operator at

frequency! satisfying ½âkð!iÞ; âyl ð!jÞ�¼�kl�ð!i�!jÞ1,
k and l labels for distinct channels, and 1 the identity
operator. The parenthetical (rounded) bra-ket notation
distinguishes frequency-explicit states from other states.
For convenience, we choose a Gaussian spectral function
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~�ð!Þ ¼ ð2��2
0Þ�1=4 exp½�ð!�!0Þ2=ð4�2

0Þ�; (2)

but our approach accommodates any spectral function.

The detector has a response function ~�Dð!Þ, possibly
different for each output port. For convenience we take
~�Dð!Þ to be Gaussian, similar to (2), but perhaps with
different mean and variance; the variance is inversely
related to the detector integration time. For

jni :¼ 1ffiffiffiffiffi
n!

p
�Yn
j¼1

Z
d!j

~�Dð!jÞâyð!jÞ
�
j0i (3)

an n-photon state corresponding to a superposition of
single-photon states in different infinitesimal fre-
quency modes, the ideal detector executes projective
measurements of the type �n :¼ jnihnj, P1

n¼0 �n ¼ 1.
Detector inefficiency arises due to a spectral mismatch
between source and detector spectral functions: the
probability of detecting a single source photon is

jR d!½ ~�Sð!Þ�� ~�Dð!Þj2 � 1.
We assume identical photons from the source, with

distinguishability introduced by time delays of the pulses.
A tunable time delay of � on the single-photon pulse is

expressed in the Fourier domain by a phase shift j1i �R
d! ~�ð!Þ exp½�i!��j1ð!ÞÞ, and the inverse Fourier

transform of ~�ð!Þ exp½�i!�� is �ðt� �Þ.
Now that we have established the single-mode source

and detector formalism, we consider two photons imping-
ing on the two input ports of the passive two-channel SU(2)
interferometer resulting in a photon-coincidence dip. This
transformation can be expressed as

Rð�Þ ¼ e�ið�þ�Þ cos�2 �e�ið���Þ sin�2
eið���Þ sin�2 eið�þ�Þ cos�2

0
@

1
A; (4)

with � comprising the three Euler angles �, �, �, and the
optical-element transformations are assumed to be inde-
pendent of frequency.

The input state j11iS has one photon in each port, i.e., a
tensor product of two single-photon source states (1) with
time delay � between modes 1 and 2. As we need to convert
the direct product of irreps for single-photon interferome-
ter inputs to a direct-sum decomposition, Young diagrams
are valuable, especially for SUðnÞ interferometry with
n > 2 as these cases can be complicated to construct. For
a system with p photons, Young diagrams comprise p hs
arranged in columns of most n boxes that represent various
regular partitions of p. These partitions simultaneously
label representations of SUðnÞ and of the permutation
group of p objects.

The representation of any SU(2) matrix on two photons
with frequencies !1 and !2 decomposes as

with the second row giving the standard labels of the irreps
in terms of highest weight. Equation (5) is also the decom-
position into a symmetric triplet and antisymmetric singlet
3 � 1 corresponding to states with angular momentum
‘ ¼ 1, 0, respectively, and m ¼ �‘; . . . ; ‘.
The two-photon state is a combination of j‘mi states:

j1ð!1Þ1ð!2ÞÞ ¼ 1ffiffi
2

p ðj00i þ j10iÞ. The single-photon state

ây1 ð!iÞj0i transforms under SU(2) as j‘ ¼ 1
2m ¼ 1

2ii and
ây2 ð!iÞj0i transforms as j� 1

2 � 1
2ii:

Rð�Þây1 ð!1Þj0i ¼ ½ây1 ð!1ÞD1=2
1=2;1=2ð�Þ

þ ây2 ð!1ÞD1=2
�1=2;1=2ð�Þ�j0i;

Rð�Þây2 ð!2Þj0i ¼ ½ây1 ð!2ÞD1=2
1=2;�1=2ð�Þ

þ ây2 ð!2ÞD1=2
�1=2;�1=2ð�Þ�j0i; (6)

with D‘
m0mð�Þ :¼ h‘m0jRð�Þj‘mi an element of the

(2‘þ 1)-dimensional Wigner D matrix. The two-photon
transformation is thus

Rð�Þj1ð!1Þ1ð!2ÞÞ ¼ 1ffiffiffi
2

p ðRð�Þj00i þ Rð�Þj10iÞ: (7)

Extinguishing coincidences arising from the triplet j10i
contribution, which is symmetric under an !1 $ !2

exchange, requires that h10jRð�Þj11i ¼ 1ffiffi
2

p D1
00ð�Þ ¼

cos� ¼ 0. Therefore, � ¼ 1
2� and is independent of �,

�. These parameters correspond to a balanced beam split-
ter with a relative phase shift between modes 1 and 2.
For � ¼ �=4 ¼ ��, the beam splitter is balanced and
symmetric: B :¼ Rð�Þ for this important case.
Typically, detectors at different output ports are dissimi-

lar. If the source pulse has carrier frequency !0 and band-
width �0, and detectors have carrier frequencies !i and
bandwidths �i for each output mode i, we introduce

weighted variances �2
i :¼ �2

0 þ �2
i ,

&2i :¼ �2
i !0 þ �2

0!i

�2
0 þ �2

i

; f�2
i :¼

�
1

�2
0

þ 1

�2
i

��1
;

and Gaussian spectral mismatch function,

�i �
ffiffiffiffiffiffiffiffiffiffi
2f�2

i

�2
i

vuuut exp

�
�ð!0 �!iÞ2

2�2
i

�
: (8)

The two-mode output coincidence rate is

P11 ¼ Sh11jBy�1 ��1Bj11iS (9)

¼ �1�2je��2=e�2
1ei�&

2
1 � e��2 e�2

2ei�&
2
2 j2; (10)

P11 ¼ 0 as expected for indistinguishable photons and
identical detectors.
Now we proceed to three-channel SU(3) interferometry

transformation, with the eight-parameter generalized Euler
angle � (assumed to be frequency independent) and
factorization [20]
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Rð�Þ � R23ð�1; �1;��1ÞR12ð�2; �2;��2Þ
� R23ð�3; �3;��3Þe�i�1h1e�i�2h2 ;

h1 ¼ 2n1 � n2 � n3; h2 ¼ 1
2ðn2 � n3Þ; (11)

with SU(2) subgroup matrices

R23ð�;�;��Þ ¼
1 0 0

0 cos�2 �e�i� sin�2

0 ei� sin�2 cos�2

0
BB@

1
CCA; (12)

R12ð�;�;��Þ ¼
cos�2 �e�i� sin�2 0

ei� sin�2 cos�2 0

0 0 1

0
BB@

1
CCA: (13)

Experimentally, the SU(2) transformation is interpreted as
the sequence phase shifter-beam splitter-phase shifter with
parameters defined by the Euler angles [21].

We employ Young diagrammethods to determine output
states given the three-photon input state

j111iS ¼
Z

d!1

Z
d!2

Z
d!3

~�ð!1Þ ~�ð!2Þ ~�ð!3Þ
� ei!2�1ei!3�2 j1ð!1Þ1ð!2Þ1ð!3ÞÞS; (14)

with time delays �1 and �2 between modes 1 and 2 and
between modes 1 and 3, respectively. The three-photon
input state (14) is

with the second row giving the standard labels in terms of
SU(3) highest weight labels (	, 
). For a diagram with ai
boxes on row i, we have 	 ¼ a1 � a2, 
 ¼ a2 � a3.

Basis states for the irrep (	, 
) are denoted
jð	;
Þ�1�2�3; Ii with �i the number of photons in port i
and �1 þ �2 þ �3 ¼ 	þ 2
. The index I distinguishes
states with the same weight (�1 � �2, �2 � �3) belonging
to different irreps of the SU23ð2Þ subgroup of SU(3). In this
notation, the three-photon state decomposes into

j1ð!1Þ1ð!2Þ1ð!3ÞÞ¼ 1ffiffiffi
6

p jð00Þ111;0iþ 1ffiffiffi
6

p jð30Þ111;1i

þ1

2
jð11Þ111;0i1þ 1ffiffiffiffiffiffi

12
p jð11Þ111;1i1

� 1ffiffiffiffiffiffi
12

p jð11Þ111;0i2þ1

2
jð11Þ111;1i2:

(16)

The SU(3) irrep (1, 1) occurs twice in Eq. (15); thus, an
additional subscript (1 and 2) is needed to denote basis
states that belong to these distinct copies of (1, 1). This

input transforms as Rð�Þj1ð!1Þ1ð!2Þ1ð!3ÞÞ and can be
expanded in terms of the appropriate SU(3) D functions.
The Young diagrams also label the representations ,

, and of S3 (the six-element permutation group of

three objects). Characters of , , and are needed to

construct the permanent, immanant, and determinant of a
3� 3 matrix [22], respectively. Whereas the connection
between coincidences at the interferometer output, the D
functions, and the permanents is clear [9,10,23], it
behooves us to find a relationship between the immanants
of Rð�Þ and the D functions of irreps of SU(3). Using
Young diagrams to denote the corresponding functions of
the matrix Rð�Þ constructed with frequencies of the output
modes fixed with respect to those of the input modes, we
observe the following.
Observation 1.—For any Rð�Þ 2 SUð3Þ,

so the full permanent of the general 3� 3 SU(3) matrix
equals the D function for irrep (3,0) with weight 0 input
and output. The immanant of Rð�Þ is the sum of D
functions for the irrep (1,1) with weight 0 input and output,
and the determinant of Rð�Þ is just the D function for
irrep (0,0).
Observation 2.—For Rð�Þkj the 2� 2 submatrix of

Rð�Þ with the kth row and jth column removed,

for Dð2;0Þ
ð110kÞIk;ð110j;ÞIjð�Þ theD function with 0 in output state

k and 1 otherwise, and 0 in the input state j and 1 other-
wise. For instance,

In view of observation 1, we consider measuring coin-
cidences for the monochromatic (continuous-wave) three-
photon input state ð1ð!iÞ1ð!jÞ1ð!kÞjS. For the special case
of ð!i;!j; !kÞ ¼ ð!1; !2; !3Þ, we find

As Eq. (18) is covariant under permutation of the output
frequencies, detecting photons of frequencies (!i, !j, !k)

in output ports (1, 2, 3), respectively, implies that
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Dð	;
Þ
ð111ÞJ;ð111ÞIð�Þ � hð	;
Þð111ÞJjRð�Þjð	;
Þð111ÞIi

� hð	;
Þð111ÞJjð}ijkÞ�1

� Rð�Þjð	;
Þð111ÞIi; (19)

with }ijk the permutation operator with action

}ijkð!1; !2; !3Þ � ð!i;!j; !kÞ; the action of }ijk on

SU(3) basis states is known from [24]. Permuting output
frequencies affects permutations of the rows in the
SU(3) matrix. The permanent thus remains unchanged,
the determinant picks up a sign for odd permutations,
and the immanant transforms in a more complicated
way according to the two-dimensional irrep of S3.
Equation (18) remains valid provided the above changes
are implemented.

The coincidence rate for output in ports 1, 2, 3 is

P111ð�Þ ¼ Sh111jRyð�Þ�1 ��1 ��1Rð�Þj111iS;
which is a function of the two interphoton delay times �1
and �2 and plotted in Fig. 1 for various values of � and
choices of the three detector spectral terms !i and �i,
i ¼ 1, 2, and 3. This rate P111ð�Þ is a sum of six terms,
one for each possible permutation of the three frequencies
(!i, !j, !k) of the photons in output channels (1, 2, 3),

respectively. Each term is in turn the product of a sum ofD
functions similar to (18) containing information on the

interferometer through the parameters �, and a detector
spectral term as in Eq. (2).
The condition for zero coincidence dip at zero time

delays is

�1�2�3jPerðRð�ÞÞj2 ¼ 0: (20)

This relationship shows that a zero coincidence can only be
obtained as a result of one of the following two conditions:
a zero spectral mismatch or a zero permanent. We empha-
size that this second condition is linked to complete indis-
tinguishability of photons at zero time delays. In the more
general case of nonzero time delays, which forces partial
distinguishability between photons, this requirement will
depend on a superposition of immanants.
According to observation 1, interferometer settings

that make Dð3;0Þ
ð111Þ1;ð111Þ1ð�Þ vanish also make PerðRð�ÞÞ

vanish from P111ð�Þ, thereby resulting in a dip. In

Figs. 1(a) and 1(b), we choose � such that Dð3;0Þ ¼ 0

and Dð3;0Þ ¼ �1=4
ffiffiffi
2

p
, respectively. As expected, only

Fig. 1(a) has vanishing dip at the origin of the plot corre-
sponding to two zero time delays. In Fig. 1(b), the dip is not
complete for zero time delays. Rather, the coincidence rate
is a superposition of immanants at nonzero time delays
but equal to the nonzero permanent at zero time delays. We
also provide two examples of three-photon coincidence
rates to demonstrate the complexity of dips that can
arise when imperfect sources and detectors are used. In

Figs. 1(c) and 1(d), Dð3;0Þ ¼ 0, but detector terms are
asymmetric: contributions from the immanants and deter-
minant interfere, and we obtain dips at nonzero time
delays. Although here we have focused on the rate of
obtaining threefold coincidences corresponding to detect-
ing one photon at each output port, we can easily calculate
other coincidence rates such as measuring �1 photons
exiting the first port, �2 from the second, and �3 from the
third port simply by replacing �1 ��1 ��1 in the cal-
culation of the rate P111ð�Þ by ��1

���2
���3

.

In summary, we have used SU(3) group theory to cal-
culate the photon-coincidence rates at the output of a three-
channel interferometer given single photons entering each
of the three input ports. Our analysis of coincidence rates
of three-photon coincidences as a function of delay times
provides a background coincidence rate against which the
depths of coincidence dips can be gauged and shows that a
rich array of coincidence dips exists from which imman-
ants of the unitary matrix can be inferred. Our technique
provides a powerful calculational tool for modeling and
interpreting output data from realistic experiments that are
on the cusp of taking the two-photon two-channel Hong-
Ou-Mandel dip to a new and exciting regime of single
photons entering multichannel interferometers. Although
brute-force calculations can be used to model the outputs
from such interferometers, our methods are much more
powerful than typical theoretical quantum optics tech-
niques for modeling photonic quantum interferometry,
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FIG. 1 (color online). Coincidence rate landscape for
three different sets of � � ð�1; �1; �2; �2; �3; �3; �1; �2Þ:
(a) � ¼ ð0; �=2; �=2; �; 0; �=2; �=2; �Þ, !0 ¼ 0, �0 ¼ 0:1,
!1 ¼ 0, �1 ¼ 0:1, !2 ¼ 0, �2 ¼ 0:1, and !3 ¼ 0, �3 ¼ 1,
(b) � ¼ ð0; �=2; 0; �=2; 0; �=2; 0; 0Þ, !0 ¼ 0, �0 ¼ 1, !1 ¼ 0,
�1 ¼ 0:1, !2 ¼ 0, �2 ¼ 0:1 and !3 ¼ 0, �3 ¼ 0:01,
(c) � ¼ ð0; �=2; �=2; 2cos�1ð1= ffiffiffi

3
p Þ; 0; �=2; 0; 0Þ, !0 ¼ 0,

�0 ¼ 0:5, !1 ¼ 3, �1 ¼ 0:2, !2 ¼ 2, �2 ¼ 0:2 and !3 ¼ 1,
�3 ¼ 0:2, and (d) same � configuration as (a) but with
!0 ¼ 0:1, �0 ¼ 0:1, !1 ¼ 0:95, �1 ¼ 0:11, !2 ¼ 0, �2 ¼ 0:1
and �3 ¼ 0, !3 ¼ 0:99.
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both in terms of making the model tractable and also in
making the resultant dips understandable. We have pro-
vided a novel and clear connection between immanants
and specific Wigner D functions for SU(3) through the
use of Young diagrams. This connection is central to
understanding the coincidence rate landscapes as depicted
in Fig. 1. This connection is especially important in light
of the potential application of higher-order photon-
coincidence dips to quantum computation such as for the
boson sampling problem [10]. Our Supplemental Material
gives concrete examples of the connections between the
SU(3) matrix, the experimental configuration, and the
immanants [25].
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