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We study photon-photon correlations and entanglement generation in a one-dimensional waveguide

coupled to two qubits with an arbitrary spatial separation. To treat the combination of nonlinear elements

and 1D continuum, we develop a novel Green function method. The vacuum-mediated qubit-qubit

interactions cause quantum beats to appear in the second-order correlation function. We go beyond the

Markovian regime and observe that such quantum beats persist much longer than the qubit lifetime. A

high degree of long-distance entanglement can be generated, increasing the potential of waveguide-QED

systems for scalable quantum networking.
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One-dimensional (1D) waveguide-QED systems are
emerging as promising candidates for quantum informa-
tion processing [1–14], motivated by tremendous experi-
mental progress in a wide variety of systems [15–24]. Over
the past few years, a single emitter strongly coupled to a 1D
waveguide has been studied extensively [2–8,10,12–14].
To enable greater quantum networking potential using
waveguide QED [1], it is important to study systems hav-
ing more than just one qubit.

In this Letter, we study cooperative effects of two qubits
strongly coupled to a 1D waveguide, finding the photon-
photon correlations and qubit entanglement beyond the
well-studied Markovian regime [25–28]. A key feature is
the combination of these two highly nonlinear quantum
elements with the 1D continuum of states. In compar-
ison to either linear elements coupled to a waveguide
[29–32] or two qubits coupled to a single mode serving
as a bus [33], both of which have been studied previously,
new physical effects appear. To study these effects, we
develop a numerical Green function method to compute
the photon correlation function for an arbitrary interqubit
separation.

The strong quantum interference in 1D, in contrast to
the three-dimensional case [34], makes the vacuum-
mediated qubit-qubit interaction [35] long ranged. We
find that quantum beats emerge in the photon-photon
correlations and persist to much longer time scales in
the non-Markovian regime. We show that such persistent
quantum beats arise from quantum interference be-
tween emission from two subradiant states. Furthermore,
we demonstrate that a high degree of long-distance
entanglement can be generated, thus supporting
waveguide-QED–based open quantum networks.

Hamiltonian.—As shown in Fig. 1(a), we consider two
qubits with transition frequencies !1 and !2, separation
L ¼ ‘2 � ‘1, and dipole couplings to a 1D waveguide. The
Hamiltonian of the system is [36]

H ¼ X
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where ayR;LðxÞ is the creation operator for a right- or left-

going photon at position x and c is the group velocity of
photons. �þ

j and ��
j are the qubit raising and lowering

operators, respectively. An imaginary term in the energy
level is included to model the spontaneous emission of
the excited states at rate �0

1;2 to modes other than the

waveguide continuum [38]. The decay rate to the wave-
guide continuum is given by �j ¼ 2V2

j =c. Throughout the

FIG. 1 (color online). Schematic diagram of the waveguide
system and single-photon transmission. (a) Two qubits (sepa-
rated by L) interacting with the waveguide continuum. Panels (b)
and (c) show color maps of the single-photon transmission
probability T and the phase shift �, respectively, as a function
of detuning � ¼ ck�!0 and 2kL. Here, we consider the loss-
less case �0 ¼ 0.
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Letter, we assume two identical qubits: �1 ¼ �2 � �,
!1 ¼ !2 � !0 � �, and �0

1 ¼ �0
2 � �0.

Single-photon phase gate.—Assuming an incident
photon from the left (with wave vector k), we obtain the
single-photon scattering eigenstate [39]; the transmission
coefficient is given by

tk �
ffiffiffiffi
T

p
ei� ¼ ðck�!0 þ i�0

2 Þ2
ðck�!0 þ i�þi�0

2 Þ2 þ �2

4 e
2ikL

: (2)

As shown in Fig. 1(b), there is a large window of perfect
transmission: T � 1, even when the detuning (� ¼ ck�
!0) of the single photon is within the resonance linewidth
(��). This is in sharp contrast to the single-qubit case,
where perfect transmission is only possible for far off-
resonance photons [3]. Such perfect transmission occurs
when the reflections from the two qubits interfere destruc-
tively and cancel each other completely. Furthermore,
Fig. 1(c) shows that within the resonance linewidth, there
is a considerable phase shift �. This feature of single-
photon transmission can be used to implement a photon-
atom phase gate. For example, in the case of � ¼ �0:5�
and kL ¼ �=4, the single photon passes through the sys-
tem with unit probability and a �=2 phase shift. Two
successive passes will give rise to a photon-atom
�-phase gate, which can be further used to realize a
photon-photon phase gate [40].

Photon-photon correlation: Nonlinear effects.—To
study the interaction effects, we develop a novel Green
function method to calculate the full interacting scattering
eigenstates and so photon-photon correlations. We start
with a reformulated Hamiltonian [6]

H¼H0þV; V¼ X

j¼1;2

U

2
dyj djðdyj dj�1Þ;
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X
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where dyj and dj are bosonic creation and annihilation op-

erators on the qubit sites. The qubit ground and excited states
correspond to zero- and one-boson states, respectively.
Unphysical multiple occupation is removed by including a
large repulsive on-site interaction term U; the Hamiltonians
in Eqs. (1) and (3) become equivalent in the limit U ! 1.
The noninteracting scattering eigenstates can be obtained
easily from H0j�i ¼ Ej�i. The full interacting scattering
eigenstates jc i are connected to j�i through the Lippmann-
Schwinger equation [11,41,42]

jc i¼ j�iþGRðEÞVjc i; GRðEÞ¼ 1

E�H0þ i0þ
: (4)

The key step is to numerically evaluate the Green functions,
from which one obtains the scattering eigenstates [39].
Assuming a weak continuous wave incident laser, we

calculate the second-order correlation function g2ðtÞ [43]
for an arbitrary interqubit separation.
Figure 2 shows g2ðtÞ for both the transmitted and

reflected fields when the probe laser is on resonance with
the qubit: k ¼ k0 (k0 � !0=c). When the two qubits are
colocated [9] (L ¼ 0), g2ðtÞ of the transmitted field shows
strong initial bunching followed by antibunching, while
g2ðtÞ of the reflected field shows perfect antibunching at t ¼
0, g2ð0Þ ¼ 0. This behavior is similar to that in the single-
qubit case [3,8].When the two qubits are spatially separated
by L ¼ �=2k0, we observe quantum beats (oscillations).
Since these beats occur in g2ðtÞ, they necessarily involve the
nonlinearity of the qubits and do not occur for, e.g.,
waveguide-coupled oscillators.
As one increases the separation L, one may expect from

the well-known 3D result that the quantum beats disappear
[44]. However, in our 1D system they do not: Fig. 3 shows
g2ðtÞ for two cases, k0L ¼ 25:5� and 100:5�, fromwhich it
is clear that the beats persist to long time. The 1D nature is
key in producing strong quantum interference effects and so
long-range qubit-qubit interactions.
Non-Markovian regime.—To interpret these exact nu-

merical results, we compare them with the solution under
the well-known Markov approximation. For small separa-
tions (k0L � �), the system is Markovian [44]: The causal
propagation time of photons between the two qubits can be
neglected, and so the qubits interact instantaneously. To
understand quantum beats in this limit, we use a master
equation for the density matrix � of the qubits in the
Markov approximation. Integrating out the 1D bosonic
degrees of freedom yields [34]
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FIG. 2 (color online). Quantum beats in the Markovian regime.
The second-order photon-photon correlation function of both the
transmitted (top) and reflected (bottom) fields as a function of t for
k0L ¼ 0 (solid line) and k0L ¼ �=2 (dashed line). The incident
weak coherent state is on resonance with the qubits: k ¼ k0 ¼
!0=c. (Parameters: !0 ¼ 100� and �0 ¼ 0:1�).
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where �ii � �þ �0 while �12 � � cosð!0L=cÞ and�12 �
ð�=2Þ sinð!0L=cÞ are the vacuum-mediated spontaneous
and coherent couplings, respectively. Transforming to sym-

metric and antisymmetric states jS; Ai ¼ ðjg1e2i �
je1g2iÞ=

ffiffiffi
2

p
gives a more transparent form:
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where �þ
S;A � ð�þ

1 � �þ
2 Þ=

ffiffiffi
2

p
, �S;A � �þ �0 � �12, and

!S;A � !0 ��12. Note that jSi and jAi are decoupled

from each other and have transition frequencies !S;A and

decay rates �S;A which oscillate as a function of L.
When L ¼ 0, �S ¼ 2�þ �0 and �A ¼ �0. jSi is in the
superradiant state, while jAi is subradiant. The waveguide
couples only to the superradiant state, and so the photon-
photon correlation mimics that for a single qubit.
However, when k0L ¼ �=2, �S ¼ �A ¼ �þ �0, !S;A ¼
!0 � �=2, and the waveguide couples to both jSi and jAi.
The quantum interference between the transitions
jSi ! jg1g2i and jAi ! jg1g2i gives rise to quantum beats
at frequency !S �!A ¼ �, as shown in Fig. 2.

As one increases the separation L and goes beyond
the Markovian regime, Eq. (5) is not a valid description

of the system because the causal propagation time of
photons (or retardation effect) has to be included.
Comparing the results in Figs. 2 and 3, we see that quantum
beats aremore visible in the non-Markovian regime in both
the transmitted and reflected fields and persist to a much
longer time scale, especially for the case k0L ¼ 100:5�.
To better understand the persistent quantum beats, we

extract the transition frequencies and decay rates of the
two-qubit system beyond the Markovian regime. This is
achieved by analyzing the poles of the Green function [39]
defined in Eq. (4); they are given by

Fð!Þ ¼
�
!�!0 þ ið�þ �0Þ

2

�
2 þ �2

4
e2i!L=c ¼ 0: (7)

In the Markovian regime, one can safely replace ! by
!0 in the exponent, given that !0 � � and L 	 c��1.

Equation (7) then yields !� ¼ !0 � ið�þ �0Þ=2�
i�ei!0L=c=2. The real and imaginary parts of!� correspond
to the transition frequencies and decay rates, which are noth-
ing but !S;A and ��S;A=2 obtained by using the Markov

approximation [Eq. (6)]. Beyond this Markovian regime, we
solve Eq. (7) iteratively by gradually increasing L.
Figure 4 shows that both !S;A and �S;A deviate signifi-

cantly from their Markovian values as k0L becomes large
[Figs. 4(c) and 4(d)]. The expanded detail plots Figs. 4(a)
and 4(e) show that the Markov approximation works well
for k0L 2 ½0; 5��. At large k0L, however, both the sym-
metric and antisymmetric states become subradiant
[�S;A 	 �; Fig. 4(f)]. This suppression of decay comes

about in the following way: After the initial excitation of
and emission from the first qubit, it can be reexcited by the
pulse reflected from the second qubit. From the excitation
probability of the first qubit over many emission-
reexcitation cycles, an effective qubit lifetime can be
defined: It is greatly lengthened by the causal propagation
of photons between the two qubits. �S;A characterize the

average long time decay quantitatively.
The nonlinear equation (7) gives rise, of course, to

infinitely many poles for L > 0. These poles represent
collective states of two spatially separated qubits with
vacuum-mediated interactions. They are eigenmodes of
the density matrix of the two qubits. The ‘‘two-pole’’
approximation of retaining only the symmetric and anti-
symmetric states is a good approximation, because (!S;A �
!0, �S;A) are the two poles closest to the origin (0, 0).

Within the parameter range we consider, all other collec-
tive states are far detuned from !0 and hence barely
populated [39]. In addition, jSi and jAi have much smaller
decay rates than all the other collective states. Therefore,
these two slowly decaying states dominate the long-time
dynamics, and quantum interference between their sponta-
neous emissions is the physical origin of the persistent
quantum beats observed in Fig. 3.
Qubit-qubit entanglement.—With the two-pole approxi-

mation, we study qubit-qubit entanglement by using the
master equation (6) with !S;A and �S;A replaced by the
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FIG. 3 (color online). Persistent quantum beats in the non-
Markovian regime. The second-order correlation function of
both the transmitted (top) and reflected (bottom) fields is plotted
as a function of t for k0L ¼ 25:5� (solid line) and 100:5�
(dashed line). We set the incident coherent state on resonance
with the qubits (k ¼ k0), !0 ¼ 100� and �0 ¼ 0:1�.
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renormalized values obtained from Eq. (7). We focus on
the steady state case by including a continuous weak
driving laser on resonance with the first qubit: HL ¼
@�1ð�þ

1 þ ��
1 Þ [27,28]. The entanglement is character-

ized by the concurrence [45]; Fig. 5 shows its steady state
value for the Rabi frequency �1 ¼ 0:1�. For small sepa-
ration [Fig. 5(a)], the concurrence agrees with that
obtained by using the Markov approximation [27]: C
reaches its maximum when the maximally entangled
two-qubit subradiant state (either jSi or jAi) has a minimal
decay rate and is well populated [28]. Between two peaks,
C vanishes, because the symmetric and antisymmetric
states are now barely populated and the usual decay rate
�þ �0 � �1 holds [46].

In contrast, Fig. 5(b) shows that the Markovian predic-
tions break down: We observe enhanced entanglement for
an arbitrary interqubit separation. Such enhancement is due
to non-Markovian processes: Both jSi and jAi become
subradiant (Fig. 4) with decay rates much smaller than �
and hence are well populated [39]. Thus, long-range entan-
glement is possible due to non-Markovian processes, mak-
ing 1D waveguide-QED systems promising candidates for
scalable quantum networking.

Discussion of loss.—Accessing the non-Markovian
regime requires a large (effective) distance between the
qubits and hence low loss in the waveguide. Here, we have
included the loss of the qubit by using an effective Purcell
factor of 10 (i.e., �10% loss). Because waveguide loss has
the same effect on system performance as qubit loss (both
lead to photon leakage), we expect that the observed persis-
tent quantum beats and long-distance entanglement are
robust against waveguide loss on this same level, namely,
�10%. While some waveguides in current experimental
systems are very lossy (such as plasmonic nanowires [15]),
we can circumvent this difficulty by using a hybrid nanofiber
system as discussed in the Supplemental Material [39]. One
example is an integrated fiber-plasmonic system [3]: The
optical fiber is coupled to two tapered plasmonic nanowires
which interactwith local qubits (e.g., quantumdots).Another
example is an integrated nanofiber-trapped atomic ensemble
[47,48]: An optical fiber is tapered into a nanofiber in two
regions where atomic ensembles are trapped by the evanes-
cent field surrounding the nanofibers. In both of these ex-
amples, the long waveguide connecting the two qubits is a
high quality optical fiber inwhich the loss is very small over a
length of the order of 100 wavelengths.
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