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We propose a new method for the analysis of deuteron stripping reactions, Aðd; pÞB, in which the

nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a

consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by

�40 MeV from the ‘‘Ed=2’’ value frequently used in the analysis of experimental data, where Ed is the

incident deuteron energy. The ‘‘Ed=2’’ rule lies at the heart of all three-body analyses of (d, p) reactions

performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and

asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in

neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of

stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and

proton in the incident deuteron in those components of the nþ pþ A wave function that dominate the

(d, p) reaction amplitude. The large shift reduces the effective d� A potentials and leads to a change in

predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear

structure.
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All practical approaches to the nuclear many-body prob-
lem are based on the concept of effective interactions.
These are designed to treat a subset of the many-body
degrees of freedom explicitly. The implicit degrees of
freedom are manifest in a set of parameters that determine
the effective interactions. They also give rise to special
features of the effective nuclear Hamiltonian. For example,
complex optical potentials arise in scattering problems
reflecting the possibility of permanent flux loss out of the
chosen subspace into the implicit space [1].

Another well-known feature of the optical potential is
nonlocality. It arises because the effective interaction takes
into account transitions from a point in the explicit space to
intermediate points in the implicit space and back again.
The initial and final points in the explicit space do not have
to have the same spatial coordinates even if some inter-
mediate points conserve energy. For nucleon-nucleus
scattering nonlocality has two implications: (i) an equiva-
lent local potential describing this scattering is energy
dependent [2] and (ii) the scattering wave function corre-
sponding to the nonlocal potential is smaller in the nuclear
interior than the local scattering wave function [3]. These
properties of nonlocal potentials are relevant to the appli-
cation of nuclear reaction theory to the interpretation of
experiment.

In this Letter we address the practical implications of
nonlocality for the interpretation of the transfer reactions
Aðd; pÞB in terms of nuclear structure. These reactions are
at the frontier of the experimental study of shell evolution
and changing magic numbers in neutron- and proton-rich
regions of the nuclear periodic table, concepts which also
have implications for the evolution of the element abun-
dances in the Universe.

In contrast to the case of elastic deuteron scattering,
where the neutron and proton are relatively weakly corre-
lated in the loosely bound deuteron and no new nonlocality
effects arise over and above those already included in the
nucleon optical potentials [4], new effects are expected to
arise in the Aðd; pÞB reaction. Its amplitude depends only
on those coherent superpositions of the elastic ðnþ pÞ þ A
and breakup nþ pþ A components that are taken at the
separations between n and p that are comparable to the
range of nonlocality of the neutron and proton optical
potentials.
The Aðd; pÞB reaction has the attractive feature of being

successfully described in terms of a nþ pþ A model in
which only the degrees of freedom associated with the
deuteron are treated explicitly while a nuclear target A is
represented by the many-body wave function unaffected by
the n� A and p� A interactions [5–7]. A crucial element
of these theories is that channels in which the d� A system
is excited into its continuum of broken-up states nþ pþ A
have to be included explicitly if the theory is to correctly
represent experiment [8]. The most important continuum
contributions to this reaction can be accounted for, over a
useful range of incident deuteron energies [9], by use of
the adiabatic distorted wave approximation (ADWA) [5].
A crucial feature of the ADWA is that it is an approximation
to the many-body reaction amplitude in which the many-
body nuclear structure is incorporated through a transfer
form factor. This allows the ratio of the measured and
calculated cross sections to be interpreted in terms of key
nuclear structure parameters in a very practical way. The
ADWA is also able to include microscopic models of the
nucleon optical potentials, but how it should be modified to
include nonlocalities has been an open question.
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The need to include nonlocality in the nþ pþ A
description of the (d, p) reaction has been highlighted in
Ref. [10] where the cross sections have been calculated
from the three-body Faddeev theory. However, this theory
neglects the internal structure of A and ignores many-
body aspects of the nþ pþ A wave function so that the
ratio of the measured and calculated cross sections cannot
be used to give useful nuclear structure information.
Reference [11] suggests a way that the missing many-
body information can be included into Faddeev equations.
However, the result is a formalism that is too complicated
for wide use by nuclear experimentalists and, in fact, no
applications have been made so far. The new formalism
also requires the use of nonlocal nucleon potentials thus
emphasizing the need to modify the existing ADWA to
include nonlocalities in a simple way.

The standard way of treating (d, p) reactions within the
ADWA is to use local nucleon optical potentials at half the
incident deuteron energy. For elastic deuteron scattering
this idea can be simply understood as being a consequence
of the loose binding of the deuteron [4]. For center-of-mass
deuteron kinetic energy Ed the neutron and proton on the
average each have kinetic energy Ed=2. The same result
can be derived [4] by using a nonlocal model of the N � A
potentials with a realistic nonlocality range, i.e., a range
that is much smaller than the size of the deuteron. The
corresponding nonlocal deuteron potential has a range of
nonlocality equal to one-half of the nucleon nonlocality
range. We show here that the inclusion of three-body
degrees of freedom and nonlocal effects in a consistent
way, when applied to the (d, p) reactions, modifies this
idea significantly and we suggest a simple way of introduc-
ing the necessary modifications while allowing existing
nuclear reaction codes to be used.

We assume a three-body pþ nþ A model where the
nucleon-A interactions VNA are nonlocal potentials of the
Perey-Buck type [2], i.e., for the n� A case

VnA�ðrn; rpÞ ¼
Z

dr0nVnAðrn; r0nÞ�ðr0n; rpÞ; (1)

where

VnAðrn; r0nÞ ¼ Hðrn � r0nÞUnAððrn þ r0nÞ=2Þ; (2)

with the Perey-Buck nonlocality factor

HðsÞ ¼ ��3=2��3
n e�ðs=�nÞ2 (3)

with a nonlocality range �n. Perey and Buck found that the
value �n ¼ 0:85 fm gave a good account of the energy
dependence of n� A scattering known at that time. They
also showed that an equivalent local potential Uloc that
gave the same n� A scattering phase shifts as VnA is
accurately given as the solution of the equation

Uloc ¼ UnA exp

�
�Mn�

2
n

2@2
ðE�UlocÞ

�
; (4)

where Mn is the neutron mass.
The Schrödinger equation for the three-body wave

function �ðr;RÞ, expressed in terms of relative and
center-of-mass coordinates of n and p, r ¼ rp � rn,

R ¼ ðrn þ rpÞ=2, is

ðE� Tr � TR � VnpðrÞÞ�ðr;RÞ ¼ ðVnA þ VpAÞ�ðr;RÞ;
(5)

where Tr (TR) is the kinetic energy operator associated
with the coordinate r (R) and

VnA�ðr;RÞ ¼ 8
Z

dR0VnA

�
R� r

2
; 2R0 � R� r

2

�

��ðr� 2ðR0 � RÞ;R0Þ: (6)

The proton term is

VpA�ðr;RÞ ¼ 8
Z

dR0VpA

�
Rþ r

2
; 2R0 � Rþ r

2

�

��ðrþ 2ðR0 �RÞ;R0Þ: (7)

These formulae are used in Ref. [4] in the evaluation of the
folding potential for d� A elastic scattering with nonlocal
nucleon potentials. We ignore 1=A recoil effects for sim-
plicity although it is straightforward to include them.
In the ADWA of Johnson and Soper, as reformulated by

Johnson and Tandy [12], the three-body wave function
�ðr;RÞ is needed in an exact form of the (d, p) transition
matrix Tdp only in the combination Vnp�ðr;RÞ. This

projection is approximated by the first term in an expansion
in Weinberg states. The latter are well adapted to the
description of �ðr;RÞ for the small n� p separations
needed for an accurate evaluation of Tdp. Thus in the

ADWA Vnp� is replaced by

Vnp�ðr;RÞ � Vnp�0ðrÞ�ðRÞ; (8)

where �0 is the deuteron ground state wave function. The
ADWA neglects all the other Weinberg components of
�ðr;RÞ [8,9,12,13] so that �ðRÞ satisfies the equation

ðEd � TRÞ�ðRÞ ¼ UdA�ðRÞ; (9)

where Ed ¼ E� �0, �0 is the deuteron binding energy.
The nonlocal operator UdA is given by

UdA ¼ h�1 j VnA þ VpA j �0i; (10)

where �1ðrÞ ¼ Vnp�0ðrÞ=h�0jVnpj�0i. For nonlocal

N � A potentials of the Perey-Buck type we obtain
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UdA�ðRÞ¼
Z
dR0UdAðR0;RÞ�ðR0Þ

¼
Z
dsdx

�
�1ðxþsÞUnA

�
R�x

2

�

þ�1ðx�sÞUpA

�
Rþx

2

��
HðsÞ�0ðxÞ�

�
s

2
þR

�
:

(11)

A similar expression appears in Ref. [4] for the nonlocal
d� A optical potential with the crucial difference that �1

is replaced by the deuteron ground state wave function �0

in the elastic case. The evaluation of Eq. (11) therefore
involves nucleon momenta introduced by scattering by the
short range function �1 that are significantly bigger than
the average values in the deuteron ground state and
produce large deviations from the ‘‘Ed=2’’ prescription
usually assumed in transfer calculations.

As a first orientation to the evaluation of this effect we
expand the form factors UNAðR� x

2Þ into a Taylor series

around x ¼ 0 keeping the first two term only:

UNA

�
R� x

2

�
� UNAðRÞ � 1

2
x � rUNAðRÞ: (12)

This is justified by the smooth behavior of UNAðRÞ and by
the short range of potential Vnp.

Using the representation �ðs2 þ RÞ ¼ eði=2ÞsK�ðRÞ,
where K ¼ 1

i r is the momentum operator associated

with the n-p center-of-mass coordinate R, we write
Eqs. (9) and (11) as

ðEd � TRÞ�ðRÞ ¼ ðUnAðRÞ þUpAðRÞÞ ~H0ðKÞ�ðRÞ
� rðUnAðRÞ þUpAðRÞÞ ~H1ðKÞr�ðRÞ;

(13)

where for � ¼ 0, 1,

~H�ðKÞ ¼
�
� @

K@K

�
� Z

dsdx exp

�
{s �K
2

�
HðsÞ

���
1ðxþ sÞ�0ðxÞ

�
s � x
s2

�
�
: (14)

Note that for spherical HðsÞ, �1, �0, the ~H�ðKÞ are func-
tions of K2. A standard procedure from nuclear reaction
and nuclear matter theory [14] replaces Eq. (13) by an
equivalent local formulation with a local potential U0

locðRÞ
that is determined by using the replacement

K2ðRÞ ¼ 2Md

@
2

ðEd �U0
locðRÞÞ; (15)

where Md is the deuteron mass, in the equation

U0
locðRÞ ¼ ðUnAðRÞ þUpAðRÞÞ ~H0ðKÞ: (16)

Then the solution of Eq. (13) is the product �ðRÞ ¼
fðRÞ’ðRÞ, where ’ satisfies the local equation

ðEd � TRÞ’ ¼ Uloc’

¼
�
U0

loc þ
@
2

Md

�rf
f

�
2 � @

2

2Md

r2f

f

�
’; (17)

and the function f (the Perey factor) is the solution of the
first order differential equation

rf
f

¼ �Md

@
2
rðUnA þUpAÞ ~H1ðKÞ; (18)

with the boundary condition fðRÞ ! 1 at R ! 1. Thus, if
the N � A potentials are nonlocal, a local model exists for
the potential in the incident channel of the Aðd; pÞB reac-
tion that accounts both for these nonlocalities and deuteron
breakup into the pþ nþ A continuum. The new local
d� A potential, Uloc, can be calculated externally and
then read in by existing ADWA computer codes.
The functions ~H�ðKÞ are readily calculated for any

nucleon nonlocality and for any model of the n� p sys-
tem. However, prior to any calculations, it is instructive to
follow an approximate procedure which shows clearly how
deviations from the ‘‘Ed=2’’ procedure arise. In Eq. (14)
we expand the factor ��

1ðxþ sÞ about s ¼ 0 retaining
terms up to second order. This would be expected to be a
useful approach if the function�1 did not vary rapidly as s
varies over the range of the nucleon nonlocality factor
HðsÞ. The leading term in this expansion gives

~H 0ðKÞ ¼ expð� ð�0
dKÞ2=4Þ; (19)

where �0
d ¼ �N=2. It was shown in Ref. [4] that when this

result is used to determine Uloc through Eq. (16) the result
is precisely the sum of neutron and proton potentials taken
at Ed=2. Corrections arise because the range of Vnp and

hence �1 is comparable to the nucleon nonlocality range
�N . Including the leading correction term gives

~H0ðKÞ¼e�ð�0
d
KÞ2=4�M

@
2

hTnpi
6

Z
dss2eð{s:KÞ=2HðsÞ; (20)

where M is the nucleon mass and

hTnpi ¼
Z

dx��
1ðxÞ

�
� @

2

M
r2�0ðxÞ

�
(21)

is a measure of the kinetic energy associated with the
n� p separations in deuteron within the range of �1 (x),
i.e., the range of Vnp. Using the Perey-Buck nonlocality

factor HðsÞ we find
~H0ðKÞ �

�
1�M

@
2
ð�0

dÞ2hTnpi
�
expð� ð�dKÞ2=4Þ; (22)

where the new nonlocality range �d is

�2
d ¼ ð�N=2Þ2

�
1� 2

3

M

@
2
ð�0

dÞ2hTnpi
�
; (23)

where we have treated terms of higher order in
M
@
2 ð�0

dÞ2hTnpi only approximately.
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For small values of M
@
2 ð�0

dÞ2hTnpi we thus obtain two

consequences of nucleon nonlocality in the three-body
model: (i) a change in the nonlocality range from the
‘‘Ed=2’’ value �N=2, and (ii) the effect of the renormal-
ization factor in front of the exponential in Eq. (22). Effect
(ii) has a simple interpretation as an energy shift. When
(22) is used to determine the local equivalent deuteron
potential through Eq. (16) we find that to leading order in
M
@
2 ð�0

dÞ2hTnpi we must sum the nucleon optical potentials at

energy Ed=2þ �E, where the energy shift

�E ¼ 1

2
hTnpi (24)

is determined entirely by the properties of Vnp and is

independent of the precise value of the nucleon nonlocality
range to the approximation we have used so far. For the

Hulthén potential VnpðxÞ ¼ V0=ðeð�H��Þx � 1Þ, where ��1
H

is a range parameter and �2 ¼ M�0=@
2, hTnpi ¼

@
2

M�Hð�H þ 2�Þ. Using �H ¼ 6:255� from Ref. [15] and

� ¼ 0:232 fm�1 we find �E ¼ 57 MeV. This is a large
energy shift leading to reduction in depth of the deuteron
distorting potential which will affect the ADWA predic-
tions of (d, p) cross sections.

The expansion parameter M
@
2 ð�0

dÞ2hTnpi used above has

the value 0.5 for �N ¼ 0:85 fm and is not particularly
small so that a more careful analysis is needed. Using the
Hulthén potential to evaluate ~H0ðKÞ and ~H1ðKÞ exactly we
find that they can both be represented by single Gaussian
functions

~H�ðKÞ ¼ ~H�ð0Þ expð��2
dK

2=4Þ: (25)

For �N=2 ¼ 0:425 fm we obtain an effective nonlocality
range �d ¼ 0:40 fm, larger that the value of 0.35 fm
predicted by Eq. (23). We also get the energy shift
�E ¼ 43 MeV which is 25% smaller than the estimate
based on the second order expansion.

We have evaluated the role of the new ‘‘Ed=2þ �E’’
prescription for 40Caðd; pÞ41Ca reaction at Ed¼11:8MeV,
measured in Ref. [16], where the 1=A effects neglected
here should be small. An energy-independent phenome-
nological nonlocal potential for proton-40Ca scattering is
given in Ref. [17]. This potential has a nonlocality range
�N ¼ 0:97 fm, for which �E ¼ 40 MeV. The corre-
sponding potential U0

loc in the 40Caþ d channel, shown

in Fig. 1(a), has shallower real and imaginary parts than the
Johnson-Soper ‘‘Ed=2’’ potential UJS. This change gives
larger 40Caðd; pÞ41Ca cross sections [see Fig. 1(b), solid
line]. The latter were calculated with the TWOFNR code
[18] in the zero-range approximation by reading in theU0

loc

as the distorting potential in the incident channel and using
the same 40Caþ n binding potential as in Ref. [17]. The
spectroscopic factor was set equal to one. The nonlocality
in the two-body p� 41Ca channel has been taken into
account by standard Perey damping of the proton distorting
wave. The cross sections increased by 28% and 17% for the

ground and the first excited states in 41Ca. The correspond-
ing spectroscopic factors obtained from comparison of
theoretical and experimental cross sections would be
reduced by the same proportions.
We have also calculated the Perey factor f and its effect on

the (d, p) cross section. We solved Eq. (18) analytically
getting the formula which is very close to the one used in
many transfer reaction codes. We have also found that terms
containing derivatives of f in the right-hand side of Eq. (17)
are small so thatUloc � U0

loc. Detailswill begiven elsewhere.

Thus, the Perey damping of the deuteron distorted wave can
also be accounted for in existing transfer reaction codeswhen
U0

loc are read in. In the 40Caðd; pÞ41Ca reaction discussed

above the Perey damping has no effect [see Fig. 1(b)].
In conclusion, starting from a three-body nþ pþ A

model with energy-independent nonlocal nucleon optical
potentials we have derived a simple local two-body model
for the distorting potential in the d� A channel. This
model includes equivalent local energy-dependent nucleon
potentials taken at an energy shifted with respect to the
widely used ‘‘Ed=2’’ rule by a predicted amount deter-
mined mainly by the n� p kinetic energy averaged over
the range of the n� p potential. Since this range is much
smaller than the deuteron radius the associated kinetic
energy shift is much larger than what is appropriate for
calculating the elastic deuteron potential from local nu-
cleon potentials. Since the depth of nucleon optical poten-
tials decreases with energy the local-equivalent deuteron
potential for (d, p) reactions, calculated using the new
‘‘Ed=2þ �E’’ prescription, has shallower real and
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FIG. 1 (color online). (a) Local U0
loc and Johnson-Soper UJS

potentials calculated for 40Caþ d and (b) the 40Caðd; pÞ41Ca
cross sections obtained with UJS and U0

loc for the ground and the

first excited state in 41Ca. The calculations with Perey damping
are shown by dot-dashed lines.
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absorptive parts in the deuteron channel and in the case
discussed here leads to increased theoretical (d, p) cross
sections. This increase will affect the interpretation of the
(d, p) experiments in terms of nuclear structural quantities
such as spectroscopic factors and asymptotic normaliza-
tion coefficients. These changes may have a substantial
effect on the understanding nuclear shell evolution and on
the prediction of cross sections for stellar reactions based
on these quantities.

Finally, the newly discovered energy shift in (d, p)
reactions should be a common feature of many-body reac-
tions involving transfer from an incident two-body projec-
tile bound by a short range potential. Since the dominant
mechanism confines the relative motion in the projectile to
a small volume within the range of this potential the
projectile’s constituents gain an additional effective energy
because of the uncertainty principle. The precise value of
this energy does not depend strongly on the range of non-
locality. This range mainly influences the effective poten-
tial in the entrance channel via the energy dependence of
the optical potentials of the projectile’s constituents.

We gratefully acknowledge the support from U.K. STFC
Grant No. ST/J000051/1.

[1] H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).
[2] F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962).

[3] F. Perey, Direct Interactions and Nuclear Reaction
Mechanisms (Gordon and Breach, New York, 1963),
p. 125.

[4] R. C. Johnson and P. J. R. Soper, Nucl. Phys. A182, 619
(1972).

[5] R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1, 976
(1970).

[6] G. Rawitscher, Nucl. Phys. A241, 365 (1975).
[7] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.

Rawitscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).
[8] R. C. Johnson, AIP Conf. Proc. 791, 128 (2005).
[9] F.M. Nunes and A. Deltuva, Phys. Rev. C 84, 034607

(2011).
[10] A. Deltuva, Phys. Rev. C 79, 021602 (2009).
[11] A.M. Mukhamedzhanov, V. Eremenko, and A. I. Sattarov,

Phys. Rev. C 86, 034001 (2012).
[12] R. C. Johnson and P. C. Tandy, Nucl. Phys. A235, 56

(1974).
[13] A. Laid, J. A. Tostevin, and R. C. Johnson, Phys. Rev. C

48, 1307 (1993).
[14] G. R. Satchler, Direct Nuclear Reactions (Oxford Press,

New York, 1983), pp. 819–824.
[15] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
[16] U. Schmidt, R. Stock, and P. Turek, Nucl. Phys. 53, 77

(1964).
[17] M.M. Gianinni and G. Ricco, Ann. Phys. (N.Y.) 102, 458

(1976).
[18] J. A. Tostevin, University of Surrey version of the code

TWOFNR (of M. Toyama, M. Igarashi, and N. Kishida),
http://www.nucleartheory.net/NPG/code.htm.

PRL 110, 112501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 MARCH 2013

112501-5

http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0029-5582(62)90345-0
http://dx.doi.org/10.1016/0375-9474(72)90540-4
http://dx.doi.org/10.1016/0375-9474(72)90540-4
http://dx.doi.org/10.1103/PhysRevC.1.976
http://dx.doi.org/10.1103/PhysRevC.1.976
http://dx.doi.org/10.1016/0375-9474(75)90393-0
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1063/1.2114701
http://dx.doi.org/10.1103/PhysRevC.84.034607
http://dx.doi.org/10.1103/PhysRevC.84.034607
http://dx.doi.org/10.1103/PhysRevC.79.021602
http://dx.doi.org/10.1103/PhysRevC.86.034001
http://dx.doi.org/10.1016/0375-9474(74)90178-X
http://dx.doi.org/10.1016/0375-9474(74)90178-X
http://dx.doi.org/10.1103/PhysRevC.48.1307
http://dx.doi.org/10.1103/PhysRevC.48.1307
http://dx.doi.org/10.1103/PhysRev.95.1628
http://dx.doi.org/10.1016/0029-5582(64)90587-5
http://dx.doi.org/10.1016/0029-5582(64)90587-5
http://dx.doi.org/10.1016/0003-4916(76)90176-7
http://dx.doi.org/10.1016/0003-4916(76)90176-7
http://www.nucleartheory.net/NPG/code.htm

