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We show, by analyzing its characteristics, that the ghost-free, 5 degree of freedom, Wess-Zumino

massive gravity model admits superluminal shock wave solutions and thus is acausal. Ironically, this

pathology arises from the very constraint that removes the (sixth) Boulware-Deser ghost mode.
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Introduction.—Over four decades ago, Isham, Salam
and Strathdee proposed a two-tensor ‘‘f -g’’ theory [1]
by adding to the Einstein action that of a second
vierbein f�

m, plus a nonderivative coupling term, leaving

a single common coordinate invariance. Of particular
interest is the limit of nondynamical (say, flat) f, giving
gravitons a finite range due to the coupling ‘‘mass’’ term.
It was rapidly shown [2], however, that, unlike their
linearized massive spin 2 Fierz-Pauli (FP) limits, these
models suffered from a ghost problem: Generic nonline-
arities reinstate a 6th degree of freedom (DoF) beyond the
linearized 2sþ 1 ¼ 5 DoF, one of which is necessarily
ghostlike. A final twist, also from that time, was the Wess-
Zumino [3] discovery of a distinguished set of f-g mass
terms. At least one of these models turned out to be
immune from this disease, keeping 5 DoF. Because
Ref. [3] was only published without detail in lecture notes,
it remained unknown. Separately, other analyses showed
that the linearized theory’s matter coupling seemed to
suffer a zero-mass discontinuity [4], as well as a failure
of the Birkhoff theorem [5]. Hence, the subject remained
moribund until the recent (independent) rediscovery [6] of
the results [3] plus two new f-g models. This exhumation
has, unsurprisingly, generated an immense industry (see
the recent survey [7]). Our purpose is to reinter f-g. We
will show that the 5 DoF Wess-Zumino model is acausal
[8]. Our methods also show that, of the two remaining 5
DoF models [6], one is definitely acausal and the other is
likely so [9]. Paradoxically, acausalities arise precisely
because of the very constraint that removes the ghost.
Note that there is no conflict between acausality and
ghostlessness, as witnessed by the old ‘‘charged’’ higher
(s > 1) spin interactions with Maxwell and gravity, say,
those of s ¼ ð3=2; 2Þ [14–16], that are also invalidated
only by acausality.

Our results will be obtained by using the method of
characteristics, analyzing the constraints’ shock wave dis-
continuities, in particular, that of the ‘‘fifth’’ scalar one that
results from combining the trace and double divergence of

the field equations, just as is done in the linear FP model, to
find a derivative-free constraint.
The model and the fifth constraint.—Our concrete 5 DoF

model is

G�� :¼ G��ðgÞ þm2ðf�� � g��fÞ ¼ 0; (1)

where all indices are moved by the dynamical metric g��

and its associated vierbein e�
m; in particular, f�� is the

fixed background vierbein f�
m times e�m and is manifestly

symmetric on shell. The vanishing of its antisymmetric part
yields six conditions. Taking the reference f�

m field as the

flat bein is a popular choice but is not physically required;
in fact, our results, both for acausality and the absence of
the sixth ghost mode, depend neither on f being flat nor
on the dimensionality of spacetime. The parameter m2

reduces to the FP mass in the weak e-field limit. Next,
we proceed as in the FP development and seek five con-
straints to reduce the a priori 10 metric DoF (now that
coordinate invariance is lost due to the preferred back-
ground). The single derivative four-vector constraint is
obviously (by the Bianchi identity) the covariant g diver-
gence of Eq. (1),

0 ¼ C� :¼ r�G�� ¼ m2ðr � f� �r�fÞ:
The scalar constraint results from taking the (covarian-
tized) FP combination

0 ¼ C :¼ r�ð‘��r � G�Þ þm2

2
G; (2)

with ‘�� :¼ ‘�me
�m, where ‘�m is the inverse of the

background vierbein f�
m. The proof that C is indeed a

constraint, i.e., devoid of second derivatives, is simple: In
the spirit of Ref. [17], we observe that the (torsion-free)
Levi-Cività spin connection !ðeÞ�m

n corresponding to

the vierbein e�
m will in general become torsionful when

employed as the spin connection for the nondynamical
vierbein f�

m. The difference between this connection
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and the Levi-Cività spin connection!ðfÞ�m
n of f�

m yields

the contorsion tensor

K�
m
n :¼ !ðeÞ�m

n �!ðfÞ�m
n:

It measures the failure of parallelograms of the dynamical
metric to close with respect to the background metric (and
vice versa). As will become apparent, it is important to
emphasize that flatness of the background metric does not
ensure vanishing contorsion. In these terms, the vector
constraint reads

0 ¼ C� ¼ m2K�
��f��:

In particular, this means that metric derivatives enter the
vector constraint only through the trace of the spin con-
nection !ðeÞ. However, the leading (second) derivative
terms of the scalar curvature R are proportional to
@�!ðeÞ���. Hence, the linear combination of the diver-

gence of the vector constraint and the trace of the equation
of motion quoted in Eq. (2) yields the remaining scalar
constraint C ¼ 0. This ensures that the model does not
propagate spurious ghost degrees of freedom and thus
evades the generic difficulties associated with massive
gravity theories [2].

For our purposes, an explicit evaluation of the scalar
constraint C is needed: we first express the scalar curvature
in terms of the contorsion

R ¼ 2r�K�
�� � K���K

��� � K�
��K�

�
�

þ e�me
�
nRðfÞ��

mn;

where RðfÞ is the Riemann tensor corresponding to the
vierbein f�

m. Observing that the second K2 term is the

square of the vector constraint � 1
m4 C�‘��‘��C�, we have

the modified constraint

0 ¼ C� 1

2m2
ðC � ‘�Þ2

¼ � 3m4

2
f�m2

2
e�me

�
nRðfÞ��

mn þm2

2
K���K

���:

The first term is the familiar FP trace, and the second one
vanishes for flat f�

m. We will see in the next section that it

is the third term that has dire consequences for the cau-
sality of the model. While it does vanish for special solu-
tions whose contorsion obeys K��� � K��� ¼ 0,

imposing this condition as an additional constraint would
remove further field theoretical DoF, an obviously unac-
ceptable tradeoff.

Acausality.—We study the causality of the model via its
characteristics, using a method first introduced in a field
theoretical context in Refs. [14,18]. This allows us to
determine the maximum speed of propagation by studying
a shock whose second derivatives are discontinuous across
its wave front. Since the model is second order in deriva-
tives, we assume that the dynamical metric g�� and its first

derivatives are continuous across the hypersurface spanned
by the shock’s wave front �. The inert f�

m background is

of course continuous. Note that we are studying causality
with respect to the dynamical metric g, not the background,
this being a putative theory of the metric field. (Actually,
our conclusions are equally valid with respect to the back-
ground metric.) Then, g, being smooth across �, defines
local light cones that allow us to decide whether the shock
wave front corresponds to superluminal propagation.
To start, we denote the leading discontinuity in the

metric across � by square brackets

½@�@�g���� ¼ �������;

where �� is a vector normal to the characteristic and ���

is some nonvanishing symmetric tensor defined on the
characteristic surface. Propagation is acausal whenever
the field equations admit characteristics with a timelike
normal ��, i.e.,

��g���
� < 0;

it can be analyzed by studying the field equations and
any combinations of field equations and their derivatives
that are of degree 2 or less in derivatives on g�� and so

have a well-defined discontinuity across�. This, of course,
amounts to studying the discontinuity of G�� and the

constraints C� and C across �.

First, we consider the antisymmetric part of the equation
of motion G�� implying f�� ¼ f��. For this, we must

compute the discontinuity of the vierbein. Since these
depend algebraically on the metric, we have

½@�@�e�m�� ¼ ����E�
m;

where E�
m is some tensor defined on the characteristic

surface. Computing the discontinuity of the relation
e�

m�mne�
n ¼ g�� gives ����ðE�� þ E��Þ ¼ �������.

At this point, we proceed by contradiction
by taking �� as timelike. Without loss of generality, we

may therefore set

��g���
� ¼ �1

and thus learn that

E�� þ E�� ¼ ���:

A similar computation based on the symmetry of f�� gives

f�
�E�� ¼ f�

�E��: (3)

Next, we compute the leading discontinuity in the field
equation G�� and in turn its trace G. Since this amounts to

studying the second derivative terms in these equations, the
result coincides with that of the FP theory computed long
ago in Refs. [15,16] (save that the indices are raised and
lowered with the metric g��):
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�2��� � ��� � �� � ��� � �� þ ����� ¼ 0;

�2�� � � � � � ¼ 0:
(4)

It is clearly useful to decompose our variables with respect
to the (unit) timelike vector ��. In particular, for a vector,

symmetric tensor, and antisymmetric tensor we have,
respectively,

V� :¼V?
� ���� �V;

S�� :¼S?�����S
?
� ���S

?
�þ����� �� �S ðS� :¼� �S�Þ;

A�� :¼A?
��þ��A

?
� ���A

?
� ðA?

� :¼A���
�Þ:

In this language, Eq. (4) implies that �?
�� ¼ 0, so

��� ¼ ����
?
� � ���

?
� þ ����� � � � �: (5)

The next task is to compute the discontinuity in the vector
constraint:

½��@�C��� ¼ m2��½@�!ðeÞ��	��f�	

¼ �m2ðE�
��	 � E	���Þf�	:

Since f�� is assumed to be invertible, by decomposing

2E�� ¼ ��� þ a��

into its symmetric and antisymmetric parts, we learn that

0 ¼ �?
� þ a?�: (6)

Together, Eqs. (5) and (6) give 2E�� ¼ a?�� � 2���
?
� þ

����� � � � � so that Eq. (3) becomes

0 ¼ f
?�
� a?�� þ ��ð2f?�

� �?
� � f?� a

?�
� � � � � � �f?� Þ

� ð� $ �Þ: (7)

The terms perpendicular and parallel to �� must vanish

separately, so

f?�
� a?���f?�

� a?�� ¼ 0¼ 2f?�
� �?

� �f?� a
?�
� �� �� ��f?� :

(8)

The first set of these equations generically gives three
independent linear conditions on as many unknowns
(a?��) and so enforces a?�� ¼ 0. The second set then gives

three conditions on the four remaining nonvanishing
unknowns �?

� and � � � � �. Thus, generically three linear
combinations of these vanish, leaving one nonzero linear
combination. If this were to vanish, we would have estab-
lished the absence of shock wave fronts � with timelike
normal ��. (Of course, one still would have to verify the

absence of special cases for the two italicized appearances
of ‘‘generically’’ in the preceding argument; those are
irrelevant in the face of the generic acausality we are about
to exhibit.)

At this stage, then, the model is left requiring one more
condition on E�

m for its causal consistency. That condition

can only be derived from the remaining scalar constraint C,
whose discontinuity across � we compute next. To begin,
to better exhibit the problem we are about to find, let
us make the assumption that the background is flat and
that the contorsion vanishes so that the remaining con-
straint implies f ¼ 0 whose discontinuity across � implies
f��E�� ¼ 0. This provides the remaining independent

linear relation between � � � � � and �?
� required to estab-

lish that E�
m ¼ 0 and in turn the absence of superluminal

shocks—so long as the contorsion vanishes.
However, the contorsion does not vanish as a conse-

quence of the field equations (in fact, as discussed
above, this would imply too many conditions on the field
theoretic DoF). Thus, a proper computation of the
discontinuity of C reads

�
��@�

�
C� 1

2m2
ðC � ‘�Þ2

��
�
¼ m2

2
��½@�ðK���K

���Þ��

¼ �m2

2
��K

���E��

¼ m2

4
��K

���a?��:

Thus, instead of a relation involving � � � � � and �?
� ,

we find the seemingly additional, but in fact redundant,
requirement ��K

���a?�� ¼ 0 on a?��. Therefore, since

some linear combination of � � � � � and �?
� does not

vanish, timelike shock normals are allowed. This estab-
lishes the promised presence of acausal characteristics for
any choice of background.
Discussion.—We have just shown that one otherwise

ghost-free, acceptable finite range gravity model is
excluded. How far does this no-go result extend to all three
possible such combinations, quite apart from other previ-
ously mentioned obstacles to these models? Very recently,
causality for models with mass terms quadratic in f has
been ruled out [9] using methods similar to the present
ones. This leaves only the third candidate mass term, cubic
in f: Any model of the form G��ðgÞ ¼ T��ðf; eÞ with

algebraic T universally yields Eq. (5) for the shock; the
structure of the fifth constraint is at the root of the acau-
sality [19]. Its covariant version for the third mass term is
as yet unknown, but, if it takes the generic form f3 þ f2K2

where K is the contorsion, the argument of Ref. [9] already
establishes its acausality. Even if it does not, there is a
potentially new source of discontinuity, closer to that of
the charged massive spin 3=2 and 2 systems [14–16,18].
Namely, zeros in the characteristic matrix can allow super-
luminal characteristics, just as critical values of the back-
ground E=M field permit superluminal signal propagation
in the charged s ¼ ð3=2; 2Þ models. In fact, for those
models, acausality can be traced to nonpositivity of equal
time commutators, a fatal physical flaw [21]. Furthermore,
tachyonic excitations would interact with, and thereby also
affect, matter sources.
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We conclude, therefore, that the acausality we have
exhibited is an unavoidable pathology of f-g massive
gravity, barring some miracle of the cubic model or some
(as yet unknown) underlying ‘‘rescue’’ modification [22]
that also yields a smooth massless limit [24]. Indeed, the
fact that neither GR nor Yang-Mills have massive ‘‘neigh-
bors’’ is a self-sharpening Occam’s razor that further orna-
ments these fundamental pillars!
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