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Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of

nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our

nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a

spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise character-

ization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe

of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the per-

formance of equidistant vs Uhrig modulation schemes for spectral analysis.
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The ability of a quantum system to withstand noise is
characterized by its decoherence rate: the rate at which
superpositions deteriorate. Hahn’s discovery [1] of the
echo technique showed that decoherence can be reduced
by external modulation, e.g., in the case of spins, perform-
ing a single spin flip during the experiment. Since then, the
idea of using external modulation to prolong coherence,
known as dynamic decoupling [2–5], has been well devel-
oped to include many pulses [6,7] and different modulation
schemes [8–12].

These techniques suggested that decoherence can be
used as a measurement tool. They rely on the condition
that a quantum system, modulated at frequency f, is
most influenced by the noise power spectral density at f
[13–15]. Decoherence becomes a measure of the noise at
that frequency component. If the relation between the
decoherence rate and the noise power spectral density is
linear, one obtains a qubit-based spectrum analyzer. This
idea has been suggested in the context of different qubit
technologies [16–19] and has been recently analyzed for
different types of noise spectra [20]. Experimental realiza-
tions of spectral analysis through spin decoherence spec-
troscopy were performed with a variety of technologies
including trapped ions [21,22], cold atomic ensembles
[23,24], nitrogen-vacancy centers in diamonds [25], super-
conducting flux qubits [26], and NMR experiments in
molecules [27].

The operation of such qubit spectrum analyzers fails if
noise is sufficiently strong and non-Gaussian. For an ex-
periment time T and noise amplitude N one needs to
assume a small noise index � � NT � 2�. If � is large,
qubit evolution can be significantly nonlinear in
Hamiltonian terms and the relation between measured
decoherence rate and noise power is no longer linear. A
straightforward remedy is to shorten the evolution time
into the perturbative, linear regime. This, however, limits
the frequency resolution and renders spectral analysis of
strong noise impractical. In many real lab scenarios, noise

is in fact too strong for its frequency components to be
resolved when adhering to the linear regime.
It turns out, as will be shown in this Letter, that nonlinear

spectral analysis can be performed for discrete spectra.
This is reminiscent of the use of simple frequency analysis
tools which enabled Babylonian astronomers to accurately
predict the timings of lunar and solar eclipses [28] and 19th
century scholars to provide tide predictions for various
coasts and harbors [29]. This is despite the fact that non-
linear evolution is present in planet and ocean dynamics
as well.
In this work we solve the problem of nonlinear qubit-

based spectral analysis for discrete noise. We find a non-
perturbative analytic relation between the coherence and
the noise spectrum. As this relation is nonlinear, we
develop a spectral estimation scheme adapted to its non-
linearity. We apply it, using a single-trapped ion, to analyze
the discrete spectrum of magnetic field noise in our lab, a
typical noise scenario where it is a necessity.
There are two immediate advantages of performing

spectral analysis in the nonlinear limit. The first advantage
is that spectral resolution supersedes the standard Fourier
limit and scales as 1=ð�TÞ. For example, in this Letter we
will show spectroscopy of a very strong noise (� ¼ 10)
with a Fourier limited resolution of 1.2 Hz and a nonlinear
spectral resolution of 0.18 Hz. The enhancement originates
from the narrowing of spectral features due to the nonlinear
frequency response function. This is analogous to the
narrowing of the point spread function in nonlinear mi-
croscopy. The second advantage is that if coherence is
estimated by a quantum projective measurement, the opti-
mal amplitude signal-to-(projection)noise ratio is obtained
when � � 2� (see Supplemental Material [30]).
We focus on a two-level quantum probe described by

jc ðtÞi ¼ � j"i þ ei�� j#i and governed by a Hamiltonian
H ¼ @½NðtÞ�̂z þ�ðtÞ�̂x�=2 where NðtÞ is classical
dephasing noise and �ðtÞ is the spectrum analyzer modu-
lation. Our purpose is to use the modulation �ðtÞ to
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quantify the noise NðtÞ. We assume no spin relaxation
processes (see Supplemental Material [30] for discussion).

For a probe initialized to jc 0i ¼ ðj"iþ j#iÞ= ffiffiffi

2
p

the su-
perposition relative phase at time T is [22],

�ðTÞ ¼
Z T

0
dtNðtÞFðtÞ ¼

Z 1

�1
dfN�ðfÞFTðfÞ; (1)

where FðtÞ � cosðRt
0 dt

0�ðt0ÞÞ, NðfÞ, FTðfÞ are the

respective Fourier transforms, the latter calculated on a
truncated experiment window of length T. Equation (1)
is an approximation which becomes exact if �ðtÞ is a train
of � pulses, not necessarily equidistant (see Ref. [22]). In
our experiment we used nearly ideal � pulses so Eq. (1)
can be used without restriction.

Phase coherence is obtained by averaging over noise
realizations, A � hei�i. The linearity of spectral analysis
is based on the assumption that noise is either weak or

Gaussian so that hei�i ¼ e�h�2i=2. In which case, the deco-
herence rate is indeed linearly proportional to the noise
power spectral density. To calculate the phase coherence
without this assumption we assume discreteness: NðtÞ ¼
P

d
k¼1 jNkj cosð2�fktþ �kÞ. For a single noise component,

according to (1), � ¼ jN0FTðf0Þj cosð�Þ so hei�i ¼
ð2�Þ�1

R

2�
0 d�ei� ¼ J0ðjN0FTðf0ÞjÞwhere J0 is the zeroth

Bessel function of the first kind. For an ideal sinusoidal
modulation at f0, A ¼ J0ðN0TÞ. The linear limit is valid
only when J0 can be well approximated to second order in
its argument. Moreover, when the noise index � � jN0jT
crosses z0 � 2:4, the first zero of J0ðxÞ, coherence becomes
negative; i.e., the superposition phase partially refocuses
close to �. Such single Bessel behavior was observed with
ions [22] as well as with nitrogen vacancy (NV) centers
under simulated noise [31] and with a cantilever coupled to
a NV center [32].

In the case of more than one noise component, the
coherence behavior takes a product form over all noise
components. Assuming �k 2 ½0; 2�� are uniformly dis-
tributed mutually independent random variables,

AðTÞ � hei�i ¼ Y

d

k¼1

J0ðjNkFTðfkÞjÞ: (2)

This equation is the main tool of our noise spectral esti-
mation method.

The nonlinear limit also reveals frequency mixing if we
allow for correlations in the �k variables. Whenever an
integer combination of the noise frequencies is nulled
P

khkfk ¼ 0, additional Bessel product terms affect the
coherence (see Supplemental Material [30] for derivation),

AðTÞ ¼ X

h1 ;...;hd
�hkfk¼0
�hkeven

ð�1Þ1=2�hk cosð�hk�kÞ
Y

d

k¼1

JhkðjNkFTðfkÞjÞ;

(3)

where the hk indices are integers and Jhk the corresponding

Bessel functions of first kind. The dominant summand
corresponding to h1 ¼ � � � ¼ hd ¼ 0 coincides with
Eq. (2). By focusing the modulation at a single frequency,
as in our experiment, all the higher Bessel terms can be
neglected, and information on the phase relation between
different spectral components is lost. One will be able to
retrieve it via the cosð�hk�kÞ term by using a multitonal
modulation.
The nonlinear dependance of the coherence A on the

spectral filter function FTðfÞ implies a spectral resolution
which is superior to the Fourier limit. For example, in the
simple case of a single frequency component at f0, the
coherence is AðfÞ ¼ J0f�sinc½�ðf� f0ÞT�g. This expres-
sion can be expanded as a power series in the sinc filter
function. As � increases, the coherence becomes sensitive
to higher powers of the sinc function, resulting in narrower
spectral features. Applying the Carmér-Rao bound [33]
shows that frequency resolution scales as 1=�T as opposed
to the 1=T scaling of Fourier limited spectroscopy (see
Supplemental Material [30]).
Our system is comprised of the Zeeman submanifold of

the electronic ground level of a single 88Srþion, j"i ¼ j5s1=2,
J ¼ 1=2, MJ ¼ 1=2i and j#i ¼ j5s1=2, J ¼ 1=2, MJ ¼
�1=2i. The dominant noise wemeasured was magnetic field
fluctuations BðtÞ due to power line harmonics rendering a
discrete noise spectrum, NðtÞ ¼ g�BBðtÞ=@, where g is the
Landé g factor, �B the Bohr magneton and @ the Planck
constant divided by 2� [see Fig. 1(a)]. In this system, spin
relaxation processes play no role (see Supplemental Material
[30]). Setup details can be found in Refs. [34,35].
To measure phase coherence we performed a Ramsey-

type experiment as shown in Fig. 1(b). A modulation �ðtÞ
of length T is sandwiched between two �=2 pulses, differ-
ing by a relative phase �rf. We then measured the proba-

bility of the ion to be in the j"i state, P", as a function of

�rf. A fit to P" ¼ 1
2 � A

2 cos�rf yields an experimental

estimate of the phase coherence A. Examples of such
fringes are shown in Figs. 1(c) and 1(d). In all cases,
�ðtÞ was a train of � pulses at different times and possibly
different rotation axes.
A first distinctive characteristic of nonlinearity is the

negative values of the coherence (noise index �> z0),
shown in Fig. 1(e). Here we fixed the modulation fre-
quency at fmod ¼ 100 Hz while increasing n, the number
of equidistant pulses. As seen, the fringe contrast with
n ¼ 19 [shown in Fig. 1(d)] is inverted with respect to
n ¼ 1 [shown in Fig. 1(c)]. A fit to Eq. (2) is shown by the
red line, assuming a single spectral component at 100 Hz,
with N0 as a single fit parameter and results in B100 Hz ¼
3:0ð2Þ �G. Physically, negative coherence values result
from rephasing of spins when the standard deviation of
phase accumulation due to noise becomes roughly �. This
is a signature of the topology of spins state space, which
limits the spin trajectory to a sphere.
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A second mark of nonlinearity is that multiple spectral
features can arise from a single noise component, as shown
in Fig. 1(f). The number of pulses is fixed at n ¼ 11 and
the modulation frequency is scanned across f ¼ 100 Hz.
The spectrum shows five coherence minima. Unlike the
linear case, these do not correspond to five different spec-
tral components but rather to a broadened response to a
magnetic field monotone. Again, a fit to Eq. (2) with N0 as
a single fit parameter is shown by the red line and yields
B100 Hz ¼ 15:3ð3Þ �G. This noise amplitude corresponds
to a noise index of � ¼ 10:3ð2Þ, well in the strong noise
regime. The noise amplitudes extracted from the data
shown in Figs. 1(e) and 1(f) are very different as these
data sets were taken at different times.

A third feature of the nonlinear regime is the superior-to-
Fourier frequency resolution. This is well demonstrated in
the data displayed in Fig. 1(f). The Fourier limit suggests
that the 100 Hz decoherence feature should not be nar-
rower than 1=T ¼ 17 Hz. However, the features marked by

the shaded stripes in Fig. 1(f) have a full width at half
maximum (FWHM) of 4 Hz indicating spectral narrowing
due to nonlinearity. For r ¼ 200 experiment repetitions the
Fourier limited resolution is 1=T

ffiffiffi

r
p ¼ 1:2 Hz. With the

nonlinear gain we expect a resolution of 1=�T
ffiffiffi

r
p ¼

0:12 Hz. Indeed, if the noise frequency f0 is allowed to
vary, a best fit to the points of steepest inclination (two
central points of the shaded region in Fig. 1, total of
r ¼ 200 repetitions) yields f0 ¼ 100	 0:18 Hz, in rea-
sonable agreement with the theoretical bound. The ability
to distinguish between two noise components also benefits
from the nonlinear gain in resolution. This is discussed in
the Supplemental Material [30] where we develop an ana-
log to the Rayleigh criteria in optics.
To practically estimate a multitone discrete spectrum we

first identify the frequencies fk of its components. In any
modulation scheme, the peak of the modulation FTðfÞ
increases linearly with the total experiment time T while
improving spectral resolution. To identify the different
noise components we therefore modulated the probe at
different frequencies. For each modulation frequency the
number of pulses was increased until the different noise
components emerged. Examples are shown in Figs. 2(a)
and 2(b). The two data sets were measured four months
apart with a different magnetic environment; the spectral
response at 150 Hz which is clear in Fig. 2(a) almost
vanished in Fig. 2(b) where a new 200 Hz component
appeared.
Once the component frequencies ffkg have been deter-

mined, the multiplicative structure of Eq. (2) is used to
determine their magnitudes Nk. Whenever the coherence
AðTÞ crosses zero, with high probability, only one of the
Bessel functions in the product is nulled. If the modulation

FIG. 1 (color online). (a) 88Srþ ground state manifold com-
prising the Zeeman sensitive quantum probe. (b) Typical experi-
mental sequence with n modulation pulses sandwiched between
two �=2 pulses with a relative �rf phase. (c), (d) Probability of

finding the probe in the j"i state at the end of a sequence vs the rf
relative phase. Red line is a best fit to P" ¼ 1=2� A=2 cosð�rfÞ,
A is the coherence. (e) Nonlinear response of the coherence with
respect to the number of equidistant pulses n. Interpulse distance
was 5 ms. The first and last points correspond to the fringes in
1(c) and 1(d), respectively. Red line is a single parameter best fit
to Eq. (2). Inversion of the fringe contrast in (d) corresponds to
negative coherence. (f) Nonlinear response of the coherence
with respect to modulation frequency, with n ¼ 11 equidistant
pulses. Spectrum corresponds to a single, highly nonperturbative
noise component. Spectral features, narrower than the Fourier
resolution, are highlighted by the shaded regions. These features
are 4 Hz FWHM whereas the Fourier limit is 17 Hz. Red line is a
single parameter best fit to Eq. (2).

FIG. 2 (color online). Spectral peak identification adapted to
the nonlinear regime. Two scans taken several months apart.
Each scan is a color map of coherence vs the number of pulses n
and the modulation frequency. The upper scan shows clear
features at 100 and 150 Hz. The latter nearly vanishes in the
lower scan and a new 200 Hz component appears. The crossing
from positive to negative coherence marked by the dashed line in
(b) can be used to extract the noise magnitude at 100 Hz as
described in the text.
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is centered about fk, increasing the experiment time T until
the first zero crossing occurs implies that the corresponding
Bessel has been nulled and provides an estimate forNk. For
example, from the zero crossing encountered along the
dashed marked column in Fig. 2(b) we obtain a zero cross-
ing estimate of 2:6ð2Þ �G for the noise amplitude at
100 Hz.

The last stage of spectral characterization is fine-tuning
of the estimated noise magnitudes with a full fit procedure,
using the previously estimated field magnitudes as a start-
ing point. Such a fit to Eq. (2) is shown in Fig. 3 with five fit
parameters B50 Hz ¼ 2:0ð1Þ �G, B100 Hz ¼ 15:4ð4Þ �G,
B150 Hz ¼ 4:2ð3Þ �G, B200 Hz ¼ 6:3ð3Þ �G, and a slowly

varying field, ðg�BBslow=hÞfslow ¼ 66ð2Þ Hz2. The non-
perturbative nature of the spectrum is quantified by the
corresponding noise indices: �50 ¼ 2:7ð1Þ, �100¼10:4ð3Þ,
�150 ¼ 1:9ð1Þ, �200 ¼ 2:1ð1Þ.
What modulation is best suited for spectrum estimation?

For the purpose of noise spectroscopy Yuge et al. [20]
suggested an equidistant pulse scheme while Cywiński
et al. [17] suggested the Uhrig [9] scheme. A comparison
of typical modulation spectra of the two is shown in the
insets of Figs. 4(c) and 4(d); in both cases the total experi-
ment time is T ¼ 66:7 ms.
The interpretational simplicity of equidistant modula-

tion is pronounced in the two-dimensional scan shown in
Fig. 4(a). For each fixed experiment duration, T, a phase
scan is shown as a column in Fig. 4(a). The contrast of each
column is obtained from a fit procedure and displayed as a
single data point in Fig. 4(c), correspondingly. The noise
spectral peaks can be easily identified at 150, 200, and
250 Hz. The spectral shape of the Uhrig modulation [inset
of Fig. 4(d)] convolutes nearby frequency components of
the noise, as seen in Figs. 4(b) and 4(d).
Quantitatively, with our noise profile, both modulation

schemes performed equally well [Figs. 4(c) and 4(d)] and
show agreement in the extracted spectrum below 1 standard
deviation as detailed in the Supplemental Material [30].
The theory and technique described in this Letter were

indispensable in measuring our lab noise characteristics. It
enabled us to calibrate our magnetic field compensation
system and reduce noise components to the �G level [22].
We expect this model to be useful for other discrete strong
noise scenarios. One example is spontaneous� oscillations
in brain activity measured using magnetoencephalography
[36]. Another example is the study of decoherence of a
single NV center induced by a finite number of 13C nuclear

FIG. 3 (color online). Fine-tuning of noise magnitudes in the
nonlinear regime. Once noise components have been identified
in frequency and magnitude, a fine-tuning estimate is obtained
by scanning the modulation frequency and fitting to the full
spectrum to Eq. (2) (red line). Here we use an n ¼ 11 equidistant
pulse sequence. Nonlinearity is well pronounced around f ¼
100 Hz where it renders spectral features narrower than the
Fourier limit with almost a tenfold improvement in spectral
resolution, as discussed in the text.

FIG. 4 (color online). Comparison of equidistant vs Uhrig modulation. (a) Each column is a scan of�rf at n ¼ 19 equidistant pulses
and a fixed T. The total experiment time T is varied from column to column and the corresponding contrast and modulation frequency
is shown in (c). (b) Same as (a), for an Uhrig scheme of 20 pulses. (c) Red line is a fit to Eq. (2). (d) Same as (c), for the Uhrig scheme.
The fit indicated by the red line yields field magnitudes consistent with the equidistant modulation fit in (c). Inset in (c) shows the
spectrum of equidistant modulation with 19 pulses and a total duration of 66.7 ms. Inset in (d) is the same as the inset in (c) for Uhrig
modulation with 20 pulses.
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spins in diamond [37] or the discrete mechanical reso-
nances of a cantilever coupled to a NV center [32].
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