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The flow behavior of polymeric liquids can be traced back to the complex conformational dynamics of

polymer molecules in shear flow, which poses a major challenge to theory and experiment alike due to the

inherently large number of degrees of freedom. Here we directly determine the configurational dynamics

of individual actin filaments with varying lengths in a well defined shear geometry by combining

microscopy, microfluidics, and a semiautomated moving stage. This allows the identification of the

microscopic mechanisms and the derivation of an analytical model for the dynamics of individual

filaments based on the balance of drag, bending, and stochastic forces.
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The configurational dynamics of single polymers is key
to our understanding of all the flow behaviors observed for
polymer solutions and their non-Newtonian rheological
properties. The flow induced stresses acting on polymers
result either in stretch coil transitions or tumbling events,
and depend on the mechanical properties of the polymer.
While stiff rods, such as several viruses, organic filaments,
or carbon nanotubes only exhibit rotational or tumbling
motion, omnipresent flexible polymers (e.g., synthetic
polymers such as nylon, silicone or biological polymers
like PEG and DNA) show all types of dynamics such as
wriggling, breathing, and irregular tumbling motion [1–8].
These dynamics are the origin of the macroscopic viscous
properties of polymeric liquids, such as drag reduction in
turbulent flows or normal stresses causing rod climbing and
Weissenberg effects, but they also dominate microscopic
systems like lab on the chip applications, gene sequencing,
or molecular electronics [9–12]. For semiflexible polymers
a flow induced buckling has been described [13], which is
one form of polymer dynamics leading to biological self-
organization phenomena, such as cytoplasmic streaming
effects or cilia synchronization [14]. Since the seminal
papers of Chu, Shaqfeh et al. [15,16], where the behavior
of single DNA filaments under simple extensional flow was
first observed, intensive efforts have been made to describe
the apparently complex polymer dynamics in detail. The
filaments’ response to flow was found to be determined by
their entropic elasticity and it was possible to model their
behavior via simulations or dumbbell models [5,17–20] and
to study ensemble properties rather than the dynamics of
individual flexible molecules by a mean field approach
and normalmode analysis [3,21–24]. For flexible filaments,
three modes of shear-induced stretching transitions had
been discussed [25]: recoil, restretch, and tumble. Cross
correlations between thickness and extension fluctuations
revealed a causal relationship leading to four phases of
motion: thickening, stretching, thinning, and crumpling
recoiling. In the opposing limit of thermal [26] and

nonthermal [27] rodlike filaments the polymer conforma-
tion is set by the bending energy.
An experimental confirmation as well as the continuous

description, which captures the regime from stiff to truly
semiflexible, is still lacking. To this end the origin and
effect of the force balances acting on single polymers need
to be identified. Yet, the experimental observations are
limited by the optical resolution, which does not allow
the resolution of the local configurational dynamics of
flexible polymers.
Here we present the direct visualization of the tumbling

dynamics of quite stiff and semiflexible linear polymers in
shear flow and an analytical description of the observed
dynamics. By combining microscopy, microfluidics, and a
semiautomated moving stage we are in the position to
directly determine the configurational dynamics of indi-
vidual actin filaments with varying lengths in a well
defined shear geometry. The observed dynamics is fully
described by a telescopic Brownian rod model for the
filament’s end-to-end vector, where the ends of the tele-
scope are confined to travel around a stadium track at a
fixed arc distance. Although the shear flow strongly bends
the filament during the tumbling, we find that the Brownian
rod dynamics of stiff filaments holds for the end-to-end
vector orientation of semiflexible filaments as well. The
analytical model allows us to recover the spatial configu-
rations during the tumbling motion as well as the average
tumbling time without any fitting parameters.
Semiflexible actin filaments, polymerized by standard

protocols (see the Supplemental Material [28]), exhibit
tumbling motions, when put into a steady shear flow (rate
_� � 4–20 s�1), which is realized here in a microfluidic
device (the technical details of the experiment are
described in the Supplemental Material [28]).
By following the flow of individual, nonextensible actin

filaments, with different contour lengths Lc, by means of a
motorized stage we are able to observe up to 40 tumbling
events for individual filaments. During each tumbling event,
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two distinct phases can be identified: a period of orienta-
tional alignment in the flow direction, governed by the
rotational diffusion of the extended filament, and a rather
deterministic period where advective transport results in
the end-over-end tumbling of the polymer (see Fig. 1(a)
and the movies in the Supplemental Material [28]).

The stochastic nature of the diffusive phase is directly
visible in the varying duration between tumbling events
[see Fig. 1(b)]. The deterministic nature of the advective
phase is also evident from the regular shaped dips in the
trajectory of the end-to-end distance Ree [see the inset of
Fig. 1(c)]. The total tumbling time needed for the end-to-
end vector to flip its direction is clearly dominated by a
phase, where it approaches a flow aligned state. Within the
advective phase a characteristic U-turn-like configuration
is typically achieved, which seems to exhibit a character-
istic Lc-independent curvature radius of �1 �m [see
Figs. 1(c) and 1(d)], consistent with the pronounced dip
in Ree=Lc from which the tumbling time is most conven-
iently determined.

We set out to demonstrate that the experimentally
observed transient behavior of actin filaments can be
rationalized by considering simple force balances for a
model filament traveling through an ideal U-shaped turn.
As the actin filaments are very thin compared to their
length, exhibiting a diameter to length ratio d=Lc �
10�3, a filament experiences virtually no torque in its fully
extended, flow aligned conformation. A rotational, thermal
fluctuation away from the aligned configuration brings the
filament into a slightly tilted and eventually bent position,
where both filament ends experience drag forces in oppos-
ing directions. The accompanying torque triggers a deter-
ministic rotation of the filament. Fluctuations against the
rotational direction of the shear flow are suppressed: the
resulting drag forces induce an opposite rotation accom-
panied by a stretching of the filament which in turn drives
the filament back into the aligned state. By contrast, fluc-
tuations along the rotational direction of the shear flow are
enhanced: the drag induces a rotation into the same direc-
tion, which is accompanied by a compressive force along
the filament. The magnitude of the drag forces increases
with increasing out-of-flow extension of the filament.
Altogether, there exists a critical end-to-end orientation
angle �c of the end-to-end vector, where the drag force
is dominant over the thermal fluctuations, separating the
advective and diffusive phases of the tumbling motion.
During the advective phase, above �c, the frictional

forces may exceed the buckling force of the filament
resulting in a U-turn like configuration with a radius RU

[see Fig. 1(d)], which can be readily computed by balanc-
ing the frictional forces with the elastic response of the
filament (see the Supplemental Material [28])

RU ¼
�
4

�

kBTLp

ck _�

�
1=4

; (1)

where _� denotes the shear rate, Lp is the persistence length

of the filament, ck is the friction coefficient per unit length
for fluid motion tangential to the filament, and kBT is the
thermal energy. For the studied shear rates the radius
can be calculated via Eq. (1) to beRU � 1 �m, usingLp ¼
16 �m for actin, in good agreement with the experimen-
tally observed values [see Fig. 1(c)]. As the conformation
travels through an approximate U-turn shape and the shear
rates are known, the time spent within the advective phase
can be estimated. The frictional forces, computed by the
torque balance (see the Supplemental Material [28]),
directly depend on the track (or line) velocity along the
U turn. This velocity we derive to be approximately con-
stant throughout the U-turn-like motion (v � _�RU),
in agreement with experimental observations (see the
Supplemental Material [28]).
This important result paves the way to derive the

complete dynamics of the telescopic rod—its orientational
as well as extensional time-dependent behavior. To this
end we begin by computing the angular velocity for the

FIG. 1 (color online). (a) Successive images of two fluores-
cently labeled actin filaments of length 8 �m (left) and 16 �m
(right) experiencing a mean shear rate of _� ¼ 6 s�1. The fluid
motion in the filaments’ center of mass frame is sketched in the
lower left corner (scale bar: 10 �m). (b) The time course of the
orientational angle � exhibits characteristic steps of � for every
interchange of filament orientation. The steps are followed by
extended plateaus around multiples of � of varying length which
are identified with extended periods of flow alignment. (c) The
mean curvature radius RU of the filament’s U-turn-like confor-
mation does not change significantly for filaments of different
contour lengths Lc. (filled circle _�� 6 s�1, open square _��
12 s�1, open triangle _�� 19 s�1). (Inset) The end-to-end dis-
tance of a 16 �m filament shows alternating dips and plateaus,
which reflect the stages of bending and full extension for every
tumbling cycle. (d) Overlay of the conformations shown in (a).
Both filaments follow a U-turn-like motion in which most of the
filament segment remains flow aligned (scale bar: 10 �m). See
the movies in the Supplemental Material [28].
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end-to-end vector ReeðtÞ of the filament in the advective
phase. Using the track velocity v we obtain for the rate of
change of its orientation angle � (see the Supplemental
Material [28])

_� ¼ _�sin2�; (2)

which coincides with the rotational component of the
velocity field of simple shear flow. It is important to realize
that the rotational speed of the model actin filament is thus
insensitive to its length. Equation (2) has a simple analyti-
cal solution and is supported by the experimentally deter-
mined angular velocities of the end-to-end vector shown in
Fig. 2(a), as they do not depend on the contour length.
Recalling that we find the filament’s end-to-end vector to
behave as a telescopic rod moving with both of its ends
along an opposing U-shaped (stadium) conformational
space with a known curvature radius RU, we have an
explicit prediction for the transient extension ReeðtÞ as
well. Its time dependence basically results from geometric
relationships between line distance and spatial distance
on a stadium-shaped geometry (see the Supplemental
Material [28]). For the length we obtain, for example,

ReeðtÞ ¼ 2RU½1þ ð _�tÞ2�1=2 (RU � Lc) in the close vicin-
ity of the sharp dips visible in the inset of Fig. 1(c). A
quantitative analysis of the dips and the full telescopic
dynamics for arbitrary Lc and RU is readily performed
(see the Supplemental Material [28] for details).
Although Eq. (2) results from a balance of bending and
frictional forces and is found to describe the motion of
semiflexible polymers, it turns out to be equivalent to the

Jeffery equation [27], which describes the rotational
velocity of a nonthermal rigid rod in the limit of thin
rods. Thus the end-to-end vector of the strongly bent
filament rotates during the advective U-turn phase equiv-
alently to an infinitely thin rigid rod [see Fig. 2(a)], and the
time spent in this phase, �adv ¼ 2 _��1= tan�c, follows
directly from Eq. (2).
In the remaining diffusive phase, below �c, the filament

is only weakly bent and behaves in a first approximation as
a Brownian rod with a constant contour length Lc. During
this phase the dynamics is set by the shear rate and the
rotational diffusion coefficient of a rodDrod ¼ 6kBT=ckL3

c,

which scales with L�3
c , and can also be used to rewrite

Eq. (1). For the time spent in the diffusive phase we obtain
�diff � ð5=3Þ�2

c=Drod, as this time corresponds to the mean
first passage time (see the Supplemental Material [28]) for
� to exceed �c, i.e., to leave the diffusive regime and to
re-enter the advective phase.
Consequently, the complete tumbling dynamics of a

semiflexible filament can be fully described by considering
the motion of a telescopic Brownian rod in shear flow,
where the orientational dynamics of the telescope coin-
cides with the one for a Brownian rod of fixed length, and
the extension dynamics is slaved to follow from the oppos-
ing U-shaped conformational space. In a Brownian rodlike
tumbling motion, a deterministic advective phase with
constant duration, in which the noise can be neglected,
alternates with a thermally dominated phase around the
flow aligned state at � ¼ 0.
The transition between both regimes is given by the

critical angle �c ¼ ðDrod= _�Þ1=3 [see Fig. 2(b)] which has
been obtained by equating the contributions of advection
and diffusion to the stationary probability flux [29] of the
angular motion. Evaluating the angular probability distri-
bution function we see that the critical angle is indeed
directly observable in our experiment and well described
by the model of the Brownian rod, Figs. 2(c) and 2(d). The
asymmetry of the experimentally observed angular distri-
bution is due to the coupling of the flow gradient to the
rotational diffusive behavior, which suppresses the fluctu-
ations against the rotational direction of the shear flow.
Considering �3

c ¼ 3�R4
U=2L

3
cLp � 1 and recognizing

that in this limit �adv ¼ 2D�1=3
rod _��2=3 ¼ ð6=5Þ�diff , we

obtain for the total tumbling time of a semiflexible filament
under strong flow conditions

�T ¼ �adv þ �diff ¼ 11

3
D�1=3

rod _��2=3; (3)

where Drod / L�3
c is insensitive to the flexibility of the

filament. Interestingly, the obtained total tumbling time is
independent of the exact nature of the U-turn-like motion.
Thus the bending of the filaments should not affect the
tumbling time. Indeed, the experiments confirm the notion
that the semiflexible polymer dynamics is the same as
expected for a stiff rod (see Fig. 3).

FIG. 2 (color online). (a) Angular velocity _� vs orientation
angle � of actin filaments with lengths of 4 �m (diamonds),
8 �m (crosses), and 16 �m (open circles). All filaments show
quite similar behavior, supporting our prediction, Eq. (2) (black
line). (b) The orientation angle � shows a predominantly deter-
ministic motion during the advective phase, namely the passage
between �c and ���c, followed by a diffusive phase between
���c and �þ�c where the realignment is superimposed by a
rather diffusive motion. (c) and (d) Probability distributions of
the orientational angle are shown for a quite stiff 4 �m actin (c)
and 16 �m filament (d) at a shear rate _� � 4 s�1. The theoretical
prediction for a rodlike polymer are overlayed as a solid line.
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In our experiments we are also able to observe the
dynamics of quite stiff rods, by considering filaments in
the limit of short lengths (see Fig. 4). Indeed, filaments

shorter than the computed buckling length Lb ¼ 2�3=4RU

of �5 �m behave as predicted by the thermal stiff rod
model (see Fig. 3). This is theoretically expected [4], yet
experimental evidence was still lacking.

We can rewrite Eq. (3) introducing the Weissenberg
number, Wi � �r _�, involving the orientational relaxation
time �r of the semiflexible chain and the corresponding
general rotary diffusion coefficient Dr ¼ 1=2�r relevant
for the dynamics of the end-to-end vector in equilibrium,

�T
�r

¼ 11� 21=3

3

�
Dr

Drod

�
1=3

Wi�2=3: (4)

For a semiflexible chain, R
eq
ee is analytically known and

Dr ¼ DrodðLc=R
eq
eeÞ2 (see the Supplemental Material [28]);

R
eq
ee ¼ Lc in the limit of quite stiff chains, by which Eq. (3)

is recovered. By this the semiflexible regime and the stiff
rod regime are fully described—without any fitting
parameters.
In the limit of long filaments (Lc � Lp) the tumbling

motion becomesmore complicated, as the filament segments
fluctuate independently, so that the filaments are able to
exhibit two or more independent tumbling events simulta-
neously, where the turns can propagate separately with
opposing directions through the filament. Such multiple
tumblings can be induced at the ends of the filament as
well as in their middle, and thus even loop formations can
occur (see Fig. 4). This complex behavior illustrates that the
complete change of the order of the end segments in flow can
be reached invariousways. Yet, the advection of the polymer
segments still obeys the Jeffery orbit. In this regime, where
Wi> 2000 the measured tumbling times decay slightly
faster than expected from Eq. (4). Considering the buckling
length of the filament, we compute the critical buckling

Weissenberg number Wib / ðLc=2LpÞ�3=2. For Wi<Wib
the stretching and compressing forces on the filament can be
neglected during the diffusive phase. ForWi>Wib buckling
occurs already within the diffusive passage, so that the time
�diff spent in the diffusive phase is shortened. Due to the
strong compressive forces, Wi>Wib is accompanied by
multiple tumbling events, so that the dynamics is set by
coupled segments of the filament which tumble individually.
Thus, this regime could be equivalent with a regime found by
simulations of flexible polymers to decay with / Wi�0:8 at
high Peclet numbers (see Fig. 3) [19,20].
Until now all theoretical approaches relied on the com-

parison with the experimentally observed dynamics of
DNA molecules under flow. Their persistence length of
50 nm, together with the used contour length of up to
80 �m results in rather complex configurational dynamics,
where parts were not accessible by the optical resolution
limit. Here the significantly increased persistence length of
actin enables the direct optical accessibility of all dynamic
processes, and the variation of the filament lengths enables
the observation of a broad range of Weissenberg numbers
spanning the quite stiff and the semiflexible regime.
The presented theoretical description in the framework

of a rotating telescopic Brownian rod allows a unifying
description for stiff and semiflexible linear polymers—
based on the experimental observation and analytical deri-
vation, that both the diffusive and advective phase obey the
Jeffrey equation once extended to thermal rods. For flexi-
ble polymers, the contour length is significantly longer
than the Kuhn length, and thus more complex dynamics
is observed. However, under very strong flow conditions,
the buckling length becomes shorter than the Kuhn length
and the presented telescopic rod model will apply again for
the motion of the individual Kuhn segments [19,20].

FIG. 3 (color online). Dimensionless tumbling times �T=�r
multiplied by ðDrod=DrÞ1=3 of actin polymers at various shear
rates plotted vs Wi ¼ _��r. Contour length ranges are given in
the legend. Tumbling times for the different shear rates decay as
described by Eq. (4) (solid line); at strong flows a deviation can
eventually be observed. Open squares show data points of
nonequilibrium Brownian dynamics (NEBD) simulations for
semiflexible polymers.

FIG. 4 (color online). Tumbling events of a (a) semiflexible
34 �m and (b) quite stiff 4 �m filament in steady shear with
_� ¼ 5 s�1. Multiple bending events occur during one tumbling
event (see the Supplemental Material [28]). The fluid motion in
the center of mass frame is sketched on the left [scale bar:
10 �m in (a) and 3 �m in (b)]. (c) Time course of orientational
angle �. (d) Time course of end-to-end-distance Ree.
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The identification of these microscopic mechanisms sets
the basis for further developments of theoretical frame-
works, which will aim for even more complex flow ge-
ometries and regimes above the overlap concentration,
where the tumbling dynamics is expected to be the domi-
nating mechanism resulting in unusual flow behavior. The
introduced experimental approach may turn out to be
instrumental to obtain microscopic evidence for these
rather complex situations.
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