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Blood flow shows nontrivial spatiotemporal organization of the suspended entities under the action of a

complex cross-streamline migration, that renders understanding of blood circulation and blood processing

in lab-on-chip technologies a challenging issue. Cross-streamline migration has three main sources:

(i) hydrodynamic lift force due to walls, (ii) gradients of the shear rate (as in Poiseuille flow), and

(iii) hydrodynamic interactions among cells. We derive analytically these three laws of migration for a

vesicle (a model for an erythrocyte) showing good agreement with numerical simulations and experiments.

In an unbounded Poiseuille flow, the situation turns out to be quite complex. We predict that a vesicle may

migrate either towards the center or away from it, or even show both behaviors for the same parameters,

depending on initial position. This finding can both help understanding healthy and pathological erythrocyte

behavior in blood circulation and be exploited in biotechnologies for cell sorting out.
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Introduction.—Cross-streamline migration under flow
plays a major role in suspensions of soft matter and
biology, where inertia of the suspended entities is often
small (the Stokes regime). Typical examples include,
among others, emulsions, DNA solutions, vesicle and cap-
sule suspensions, and blood. Cross-streamline migration
also plays a decisive role in several industrial and medical
applications, such as polymer processing [1], DNA sorting
[2], and hemodynamics [3], to name but a few. A promi-
nent example in blood flow is the lateral motion of eryth-
rocytes towards the flow centerline resulting in a drastic
reduction of blood flow resistance in the microvasculature
(Fåhræus-Lindqvist effect). Cell migration properties can
be exploited in lab-on-chip technologies in order to per-
form biofluid separation, medical diagnosis, and so on.

The general picture is that the suspended entities in these
types of solutions (e.g., red blood cells —RBCs— in
blood) exhibit cross-streamline displacement, provided
that the symmetry of the Stokes flow is broken. For ex-
ample, the time reversal symmetry of the Stokes equations
precludes this type of migration for solid spherical parti-
cles. Contrariwise, the ability of soft suspended entities
to deform in response to flow stresses may lead to an
upstream-downstream asymmetry resulting in the break-
down of the overall time reversal symmetry (Stokes equa-
tions combined with boundary conditions on the soft
boundaries). The main situations leading to the breakdown
of this symmetry are (i) shear flow close to a solid bound-
ary, (ii) Poiseuille flow, and (iii) mutual interactions. As a
result of the symmetry breaking, the suspended entities
undergo cross-streamline migration. However, the migra-
tion direction, which follows from an interplay between
particle elasticity and flow patterns, turns out to be a subtle
phenomenon, as reported here.

Our study focuses on vesicles (a closed phospholipid
membrane), which have known a tremendous upsurge of

interest in recent years [4], owing, in particular, to simi-
larities with RBCs in their behavior under flow. Several
steps forward have been undertaken regarding migration
by experimental [5–8], analytical [9–13], and numerical
studies [14–19], but a complete understanding of this
phenomenon remains an issue due to the intrinsic complex-
ity of the problem. For example, it was reported that a
vesicle (or a RBC) placed away from the Poiseuille flow
centerline should migrate towards the center [6,12,17,18].
We find here that the overall picture is far from being
obvious: a vesicle can also migrate outwards until it
reaches a wall, or stop at some intermediate position far
away from the center, or stay off-centered but remain in the
vicinity of the center, and so on.
Problem formulation.—The intrinsic properties of a

vesicle can be characterized by the following parameters:
The volume V ¼ 4�R3

0=3, where R0 is the radius of a

sphere having the same volume, and the surface area
A ¼ 4�R2

0ð1þ �Þ, where the normed excess area from a

sphere � is a dimensionless parameter measuring the
degree of deflation of the vesicle. The volume and surface
area of the vesicle are conserved due to the impermeability
and inextensibility of the membrane. The viscosities of
external and internal liquids are denoted as �ext and
��ext, respectively, where � is viscosity contrast. The
membrane is endowed with the resistance to bending char-
acterized by the bending modulus �. The shear and
Poiseuille flows are characterized by the shear rate _� and
the flow curvature �, respectively:

v1
x ¼ _�y; v1

x ¼ �ðD2=4� y2 � z2Þ (1)

in Cartesian coordinates (x, y, z), where D is diameter of
the tube (which is fictitious, because of assumption of
unbounded flow; in a real system, we have in mind large
D in comparison to cell diameter). In unbounded flow,
one can add an arbitrary constant to the flow field
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without affecting the physics; only the flow curvature �
matters. We define dimensionless capillary number as Ca ¼
_�R3

0�ext=� [20] and Ca ¼ �R4
0�ext=� [12] for shear and

Poiseuille flows, respectively. For the analytical study, we
consider typical values of � provided in the experimental
literature, namely in the range 0 to 0.1 [5–8,21,22]. In most
experimental studies [5,6,8], the flow strength is large as
compared to bending forces, so that it is legitimate to con-
sider the casewhereCa � 1. This also holds inmost sites of
the microvasculature (since _�� 102 � 8� 103 s�1 [23]).

We focus formally on long-range asymptotic behavior
for the pairwise interactions and the interaction with a wall,
which allows for analytical tractability. Full numerical
simulation will reveal, however, quantitative agreement
with the analytical results even for distances of about two
vesicle diameters. The full flow field can be represented as
a sum of the imposed flow field v1 and the disturbance
flow v induced by the vesicle. The induced flow at vector
position R (from vesicle) reads [24]

viðRÞ ¼ � 3

8�

RiRjRkSjk

�extR
5

þOðR�3Þ; (2)

where repeated indices are to be summed over according to
Einstein’s convention and Sij is a symmetric traceless

tensor, called the stresslet of the particle. The Eq. (2) is
valid if R � R0 and no external force acts on the vesicle. In
this Letter, the analytical study (but not the numerical one)
is concentrated on the situation where � ¼ 1, which offers
a simplified expression for the stresslet:

Sij ¼ S0ij �
1

3
�ijS

0
kk; S0ij ¼ �

Z
rifjdA; (3)

where ri is the membrane coordinate vector and fjdA is the

membrane force. This force is nothing but the bending
one supplemented with the ‘‘tension’’ force associated
with the Lagrange multiplier enforcing local inextensibil-
ity of the membrane [25]. The determination of the stress-
let tensor Sij is the key point in order to extract the

analytical expressions of the migration laws. Our boundary
integral simulations show that the bending part of the force
attains a saturation as the capillary number is increased.
Since the tension forces scale with the capillary number, it
is legitimate to neglect the bending contribution of the
force in favor of the tension one. Formally, this corre-
sponds to setting Ca ¼ 1. Comparison between the nu-
merical (obtained at finite, albeit large enough Ca) and
analytical results supports this statement (as shown below).

The evaluation of Sij requires the determination of the

vesicle shape and surface forces under flow. This can be
achieved with the use of so-called small-deformation ap-
proximation [26] (which means small enough �; unlike
droplets, here, the maximal deformation is not set by Ca

but by � due to membrane inextensibility). We expand the
Stokes equations with boundary conditions in power series
of � on the basis of spherical harmonics in a consistent

manner [27]. Here, we merely focus on the results and their
consequences (see details in Ref. [28]).
The three migration laws.—(i) Wall-induced migration:

The wall is located at y ¼ 0 [consistently with Ref, (1)]
and y0 is the height of the centroid of the membrane above
the wall. In general, given any physical entity (drop, vesicle,
etc), the migration velocity can be expressed as [29]

Vm ¼ � 9

64��ext

Syy

y20
þOðy�3

0 Þ: (4)

The physical nature of the entity under consideration (e.g.,
vesicle) is carried by Sij. In the long-range asymptotic

regime, it is sufficient to use the shape and stresslet
obtained in an unbounded shear flow. We first determine
Syy in powers series of �, which then yields for � ¼ 1

Vm ¼ 69 _�R3
0

448y20

ffiffiffiffiffiffiffiffiffi
30�

p ½1� 2:360�þ 19:05�2 � 180:2�3

þ 1754:�4 � 17021:�5 þOð�6Þ�; (5)

where we have converted fractions involving ratios of large
natural numbers (given in Ref. [28]) into decimal numbers.
For the sake of comparison with experiments [8], we
determine two axes of the projection of the vesicle on the
y ¼ 0 plane: â1 (x-axis) and a3 (z-axis):

â1 ¼ 2R0½1þ 6:473�� 18:69�2 þ 214:0�3 � 3217:�4

þ 55346:�5 � 995354:�6 þOð�7Þ�; (6)

a3 ¼ 2R0½1� 2:321�þ 9:120�2 � 47:43�3 þ 248:1�4

� 664:1�5 � 12034:�6 þOð�7Þ�: (7)

Our results are reported on Fig. 1 (solid line) in the plane
of the the apparent asphericity â1=a3 and the dimension-
less lift parameter � ¼ 24Vmy0

2=ð _�â1a23Þ, as defined in

experiments [8]. We performed numerical simulations
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FIG. 1 (color online). Migration of a vesicle in a semibounded
shear flow. Solid line corresponds to Eqs. (5)–(7). Small diamonds
are results of boundary integral simulations with Ca ¼ 100.
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(small diamonds), using boundary integral method [30], to
estimate the convergence of the expansion. Remarkable
agreement is obtained between the present analytical the-
ory, experiments and full numerical simulations. We find
that Eq. (5) shows quantitative agreement with numerical
simulations in wall-bounded shear flow even for distances
as small as two vesicle diameters (see Discussion) and for
�< 0:05. Note that the asymptotic behavior of Vm for
almost spherical vesicles has been already calculated in

Ref. [10] with an implied assumption � ¼ Oð��1=2Þ. Since
we consider the case of� ¼ 1, it is not surprising that Eq. (5)
shows different quantitative results from that in Ref. [10].

(ii) Migration in Poiseuille flow: Let us now consider
the second source of migration, namely, the shear gradient
in Poiseuille flow [Eq. (1)], which reveals an unexpected
richness. Because the vesicle shape adapts itself rapidly to
the imposed flow as compared to the migration time, the
migration velocity solely depends on vesicle position. In
general, this dependence is lengthy (see Ref. [28]), how-
ever, for y0 � R0 [12], the velocity tends to a value that is
independent of y0 (plateau on the right side in Fig. 2):

Vm ¼ ��R2
0

2

ffiffiffiffiffiffi
�

30

s
½1� 10:019�þ 104:92�2 þOð�3Þ�

(8)

with � ¼ 1. Equation (8) shows that not very deflated
vesicles always migrate towards the center of a channel in
strong flows (in agreement with the results in Ref. [12],
where a planar Poiseuille flow was considered). Comparison
with numerical simulations shows good agreement.

Exploring further the parameter space by means of a
systematic numerical simulation (similar to that in
Ref. [30], albeit with several improvement as described
in Ref. [28]), we discover the existence of a new panel of
scenarios. The complexity of the picture depends both on

the capillary number Ca and the viscosity contrast � (for a
given �). For � ¼ 1 and � ¼ 0:0728, we find that a vesicle
initially placed away from the flow centerline always
migrates towards the center for a high enough Ca (for
example, Ca ¼ 100), and adopts an axisymmetric para-
chute shape. The same trend is observed for lower Ca

(Ca ¼ 25), but we found that the final shape has a lower
symmetry, a croissantlike shape [31]: instead of the full
rotational symmetry around the centerline present in the
parachute shape, the croissant enjoys only two orthogonal
symmetry planes. In other words, by lowering Ca, we have
a spontaneous symmetry-breaking bifurcation from para-
chute to croissant. Upon further decrease of Ca (down to
Ca ¼ 10), we find that a vesicle migrates towards the
center, approaches it, but never reaches it: the shape is a
slipper [32–36]. For smaller values (the caseCa ¼ 0:1), the
vesicle stops far from the center. Conversely, if the vesicle
is placed at the flow centerline for Ca ¼ 10 and Ca ¼ 0:1,
it will either migrate slightly outwards (slipper for
Ca ¼ 10) or significantly far away and stop (Ca ¼ 0:1) at
some lateral position.
We have investigated further this question in the pres-

ence of a viscosity contrast (� ¼ 5, a typical value for
RBCs). We have found that this ingredient completely
destroys the above picture of migration. At large enough
Ca (Ca ¼ 1000), with any initial position explored so far,
we find an indefinite outward migration (i.e., without any
tendency of stopping). For smaller values of Ca, the vesicle
exhibits either a perpetual outward migration or stays in
vicinity of the center (acquiring a slipper shape), depend-
ing on initial position. In other words, there is metastabil-
ity. The basin of attraction of the slipper solution and its
center of mass distance from the centerline increase as
Ca is decreased. The various scenarios are summarized in
Fig. 3.
(iii) Interaction between 2 vesicles: Finally, let us deal

with the migration due to hydrodynamic interaction, which
plays an essential role in so-called hydrodynamic diffu-
sion. In order to characterize this phenomenon, we con-
sider two identical vesicles in simple shear flow located in
positions ðx0ðtÞ; y0ðtÞ; 0Þ and ð� x0ðtÞ;�y0ðtÞ; 0Þ and mea-
sure the difference in y components before and after the
interaction:

�yi ¼ 2 lim
t¼�1y0ðtÞ; �yf ¼ 2lim

t¼1y0ðtÞ: (9)

For �yi � R0, Eq. (2) provides the disturbance of the flow
due to hydrodynamic interactions, which yields the follow-
ing differential equation for y0ðtÞ:

_y 0ðtÞ ¼ � 3y0ðtÞ½Sxxx0ðtÞ2 þ 2Sxyy0ðtÞx0ðtÞ þ Syyy0ðtÞ2�
32��ext½x0ðtÞ2 þ y0ðtÞ2�5=2

:

(10)

Because we are interested in the long-range interaction, we
substitute the undisturbed dependence x0ðtÞ ¼ _��yit=2,
y0ðtÞ ¼ �yi=2 into the right hand side of Eq. (10).
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FIG. 2 (color online). Migration of a vesicle in unbounded
Poiseuille flow. Solid lines are calculated analytically, symbols
are the results of simulations using boundary integral method
with Ca ¼ 1000.
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Then �yf � �yi can easily be obtained upon integration,

yielding

�yf � �yi ¼ � Sxx þ 2Syy

2��ext _��y
2
i

¼ Szz � Syy

2��ext _��y
2
i

: (11)

Like Eq. (4), this expression is valid for any elastic particle.
Using Sij for tank-treading vesicles, we obtain for � ¼ 1

�yf��yi¼ 13R3
0

7�y2i

ffiffiffiffiffiffi
5�

6

s
½1�4:526�þ29:16�2�262:2�3

þ2534:�4�24640:�5þOð�6Þ�: (12)

Comparison between far-field analytical expansions and
direct numerical simulations is shown in Fig. 4.

Discussion.—In order to evaluate the range of applica-
bility of our analytical results [Eqs. (5) and (12)], we have
performed direct numerical simulations of vesicle-vesicle
and vesicle-wall interactions [28]. Figure 1 of Ref. [28] and
Fig. 4 shows that long-range asymptotic laws [Eqs. (5) and
(12)] interestingly capture the full numerical results quan-
titatively (within a few %) even for distances as small as
two vesicle diameters.

The lift force due to vessel walls is a determinant
factor in the microvasculature (capillaries, venules, and
arterioles) as testified by the famous Fåhræus-Lindqvist
effect [3] (drastic decrease of apparent blood viscosity
when tube diameter decreases from about 103 to 10 	m).
Furthermore, hematocrit in the microvasculature falls in
the range 10–20% [23] where the semidilute regime makes
sense. Another relevance of the lift force can be found in
recent in vitro experiments [37] on separation of blood
cells, which have been guided by an asymptotic theory
on lift [9] of a single vesicle. Our result should provide a

basis for further improvement of blood separation. Besides
the wall lift force, we have found that in a Poiseuille flow
the situation is quite complex, with a plethora of scenarios:
migration away from center, or towards the center, and
metastability, depending on flexibility and the flow
strength. From this observation, we believe that this knowl-
edge would advance rational design of the lab-on-chip
technology. Additionally, the analytical study of hydro-
dynamic interaction opens the way to extract rather easily
information on the hydrodynamic diffusion of semidilute
suspensions. Interplay between lift due to wall and shear
gradient and hydrodynamic diffusion is decisive for radial
hematocrit distribution, that in turn, dictates the overall
blood flow dissipation in the microvasculature. Finally, we
hope that this work will incite new experiments on vesicles
and RBCs in order to check the predictions, but also to
draw similarities and dissimilarities between the two sys-
tems. This will constitute an essential piece of information
in order to guide further theoretical development and espe-
cially, to better identify the role of the cytoskeleton in
RBCs, the precise modeling of which is still matter for
debate.
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