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The distribution of red blood cells (RBCs) in a confined channel flow is inhomogeneous and shows a

marked depletion near the walls due to a competition between migration away from the walls and shear-

induced diffusion resulting from interactions between particles. We investigated the lift of RBCs in a shear

flow near a wall and measured a significant lift velocity despite the tumbling motion of cells. We also

provide values for the collective and anisotropic shear-induced diffusion of a cloud of RBCs, both in the

direction of shear and in the direction of vorticity. A generic down-gradient subdiffusion characterized by

an exponent 1=3 is highlighted.
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Blood is a dense suspension of deformable cells, mainly
red blood cells (RBCs), making it a complex fluid from a
rheological viewpoint, and leading to complex flow pat-
terns in the microcirculation, where the diameter of blood
vessels becomes comparable to cell size.

In his pioneering work, Poiseuille revealed that blood
flow in arterioles and venules features a RBC-free plasma
layer near the vessel wall [1,2]. The lubrication effect
of this depleted layer leads to the Fåhræus-Lindquist effect,
a decrease of the apparent viscosity of blood in small
vessels when their diameters become comparable to cell
size (d < 500 �m) [3].

Aclassic result in low-Reynolds-number hydrodynamics—
relevant to blood flow in arterioles and venules [4,5]—is
that migration of spherical particles transversally to flow
direction is prohibited by the linearity and flow-reversal
symmetry of the Stokes equation [6]. However, the defor-
mability or the nonsphericity of RBCs allow a symmetry
breaking that may lead to transverse migration, be it due to
interactions with walls or neighboring cells.

In a shear flow near a wall, lipid vesicles experience a lift
force that pushes them away [7–10], at least when they are
in a tank-treading regime, with steady inclination angle.
A straightforward question arises: how do RBCs, that are
usually in a tumbling regime [4,11] and explore all angles,
still experience a nonzero average lift force? While many
numerical studies have tried to reproduce this behavior
[12–17], experimental data on this basic mechanism are
rare [4] or focused on RBCs artificially placed in the tank-
treading regime [18].

This migration of blood cells forms the physical basis of
the formation of a depleted layer near vessel walls in the
microcirculation. However this phenomenon alone cannot
explain the complexity of flow patterns observed in the
microvasculature, where redistribution processes are
indeed very frequent since bifurcations are met every 20
vessel radii [19]. In physiological conditions, blood is a

very concentrated suspension with a hematocrit up to 50%,
in which the hydrodynamic interactions between cells
play a decisive role. The interactions between two bodies
in flow is a fundamental question in the framework of
suspension dynamics and rheology, even in rather dilute
suspensions [20,21]. Unlike smooth and spherical parti-
cles, rough spheres [22] and deformable particles, such as
drops, bubbles, capsules or vesicles [23–27], are irrevers-
ibly shifted after interaction.
The cumulative effect of these hydrodynamic interac-

tions is a nonlinear and anisotropic shear-induced diffu-
sion (SID) [22,24]. The consequences of this SID are
twofold: repeated collisions of one blood cell with the
others lead to a random walk which may be important
for mixing properties of blood flows (self diffusion) and
a redistribution of concentration inhomogeneities that
balances lift forces (collective or down-gradient diffu-
sion). The coefficients characterizing both phenomena
are a priori different [22]. Investigations of the random
walk of RBCs in concentrated suspensions [4,28,29]
provided values of the dispersion coefficient two orders
of magnitude higher than Brownian diffusivity. These
studies were complemented by cell tracking experiments
in quasi two-dimensional flow [30]. All these studies and
most numerical works [31,32] focus on the self diffusiv-
ity; however, there has been no experimental quantifica-
tion of down-gradient diffusion in nonhomogeneous
suspensions of RBCs, and whatever the considered par-
ticles, experimental characterizations of down-gradient
diffusion are scarce [33,34].
We report on an experimental study on the lift of diluted

RBCs in shear flow near a wall and show that tumbling
RBCs follow the same scaling laws as tank-treading
vesicles [7,10], capsules [35], and drops [33]. In a different
experiment, the collective SID of RBCs was investigated,
providing values of the diffusivity in the vorticity direction
and in the direction of shear.
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Lift of RBCs in shear flow near a wall.—In order to avoid
screening by sedimentation, measurements were per-
formed in microgravity in Centre National d’Etudes
Spatiales and European Space Agency (ESA) parabolic
flight campaigns. The procedure and experimental setup
are detailed in Ref. [10]. We use a Couette shear flow
chamber with two parallel glass discs, with a gap of
170 �m. The three-dimensional positions of the RBCs,
which initially lie on the bottom disc, are captured by
digital holographic microscopy [36,37].

Blood was collected from healthy donors and washed
twice in phosphate buffer saline (PBS) and bovine serum
albumin (BSA). After gentle centrifugation, RBCs were
dispersed into different fluids—ðPBSÞ þ ðBSAÞ alone or
combined with a mixture of 1% dextran of molecular
weight 1:5� 104 þ n% dextran of molecular weight
2� 106, n ¼ 3, 4, 5. Corresponding viscosities are, respec-
tively, 1.4, 6.1, 9.3, and 13 mPa.s (T � 21 �C).

For a neutrally buoyant ellipsoidal lipid vesicle, the
theoretical drift velocity is given by [7] _z ¼ U _�R3=z2,
where R is a particle characteristic size, _� the shear rate,
and z the distance to the wall. U is a dimensionless drift
velocity which depends on vesicle shape, and on the inner
and outer fluid viscosities. It yields the following scaling:

z3 ¼ 3UR3 _�tþ z30: (1)

The evolution of the mean transverse position hzi3 is
presented as a function of _�t in Fig. 1. For a given external
solution, all results fall on the same straight line in agree-
ment with Eq. (1). By symmetry, a tumbling rigid object
should not migrate on average [7]. The nonzero lift sug-
gests that RBC deformability allows symmetry breaking: it
is stretched when oriented in the direction of the elonga-
tional component of the flow, while it is compressed when
orthogonal, resulting in an averaged asymmetric shape,

leading to a migration law similar to the one known for a
fixed shape and orientation. By increasing the external
viscosity, the stresses on the RBC membrane are higher
and lead to increased deformation [11] which in turn
enhances the lift. RBCs in the 13 mPa.s solution have
viscosity ratio close to 0.3 [38] and are probably very close
to the tank-treading regime [39], in which case Olla pre-
dicts a migration with comparable UR3 ¼ 6:4 �m3 for a
vesicle of similar (but fixed) shape [7], with long axis equal
to 7:2 �m, the mean diameter of a RBC [40]. Assuming
_x ¼ _�y, we find that in physiological conditions, a RBC
will migrate by 8 �m while travelling 1 cm, a result in
good agreement with the pioneering result of 4 �m drift in
Poiseuille flow by Goldsmith [4].
Shear-induced diffusion in channel flow.—The SID of a

RBC suspension was studied in standard polydimethylsi-
loxane microfluidic chips. Thanks to a flow-focusing de-
vice, a thin layer of RBC suspension is produced in a
rectangular channel where a buffer (PBS solution) flows
in the x direction, the gravity direction. The RBC cloud is
pinched at the entrance in the y direction and the direction
of observation is z, allowing us to record the evolution of
the RBC cloud in the (x, y) plane (Fig. 2). We restrict the
study to moderate shear rate values bounded by shear rate
at the edge _�max � 340 s�1 and therefore comparable to
physiological ones [4].
We first focus on two channels with high aspect

ratios—width 2d� height 2h ¼ 491� 53 �m2 and
497� 101 �m2. Thus, the velocity profile is parabolic
across Oz and almost flat in the Oy direction. In this
case, due to the strong shear in the z direction, the concen-
tration tends to homogenize quickly due to diffusion in the
plane of shear, while diffusion in the vorticity y direction
leads to the observed widening (Fig. 2).
From microscopic images taken with a long exposure

time, a calibration process based on the Beer-Lambert law
relates the grey intensity to the local concentration profile
�ðx; yÞ. The evolution of the concentration profile along
x is directly related to the diffusion process through the
following advection-diffusion equation [41]:
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where h:i denotes the average over z.
Here we assume that the concentration of RBCs is

homogeneous in the z direction. We also suppose that the
velocity u is the one of an unperturbed Newtonian fluid
[42]. The diffusivity D ¼ f3R

2 _�� is proportional to the
frequency of pair interactions _��, a straightforward scal-
ing for shear-induced diffusion due to pair interactions
[22,24]. As in Ref. [22], we denote f3 the dimensionless
diffusivity in the vorticity direction.
Rusconi and Stone made similar experiments with

plateletlike particles, with different initial and boundary
conditions [34]. They considered the spreading of a con-
centration step with fixed concentrations at each end and
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FIG. 1 (color online). RBC-wall distance hzi3 vs _�t for differ-
ent outer viscosities: (a) 1.4 mPa.s; (b) 6.1 mPa.s; (c) 9.3 mPa.s;
(d) 13 mPa.s. Full lines indicate fit to Eq. (1), with UR3 ¼ 0:36,
3.1, 3.2, 5:4 �m3, respectively.
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found a x1=2 scaling for the diffusive front. In our case, a
peak of fixed area spreads, and self-similar solutions exist

under the condition of a widening with a x1=3 scaling [41].
The self-similar concentration profile is parabolic, and one
finds the following relation for the expected half-width at
half-height of the RBC cloud:

wðxÞ ¼ w0ð1þ Ax=w3
0Þ1=3; (3)

where the initial peak has width 2w0, A ¼ 27f3R
2N0

8
ffiffi
2

p
h

and

N0 ¼
R
�ðx; yÞdy is the conserved number of particles

[41]. The scaling w3 � w3
0 ¼ Ax, as well as the parabolic

concentration profiles, are nicely recovered in experiments
for different h, w0, and N0 (Fig. 3), and the slope A gives a
direct measurement of f3. Figure 4(a) shows that for all
available data in the mid-concentration range (�< 16%),
A is a linear function of N0=h, giving a dimensionless
diffusivity for RBCs f3¼0:12�0:01, with 2R¼7:2�m,
the mean diameter of a RBC. With similar choice for R,
f3 ¼ 6:9 was found for very flat platelike particles [34].
This discrepancy cannot be related to the deformability of
RBCs: self diffusivity of hardened cells has been shown
to be of the same order as the one of normal cells [30].
However, both discoidal particles are tumbling; thus, the
effective occupied volume is much larger. Replacing � by
�Ve=V, where V is the particle volume and Ve ¼ 4�R3=3
this effective volume, we find f3 ¼ 0:05 for RBCs and
f3 ¼ 0:18 for platelike particles. These values are now
comparable. The remaining difference can be attributed
to the details of the hydrodynamic interactions. For
instance, in Ref. [22], f3 varies from 0 to 0.03 for rough
spheres with minimal separation going from 0 to 0:08R.

At higher volume fractions of RBCs (�< 30% in the
experiments), the diffusion should not be a consequence of
pairwise interactions only, since a RBC interacts with
multiple neighbors, and interactions between at least three
bodies should also be considered. These interactions lead
to an additional term proportional to �2 in the diffusion

coefficient and to a different scaling, namely x1=4 if these
three-body interactions were the dominant effect [41].
However, the noise in the experimental data allows a rather
good rescaling with exponents between 1=3 and 1=4. By
forcing a 1=3 exponent, one gets an effective diffusivity
which increases more than linearly with concentration,
showing the increasing importance of three-body interac-
tions in the diffusive process [Fig. 4(b)].

An interesting potentiality of this experimental device is
the possibility to measure both diffusivities f2 and f3

corresponding to repulsion of interacting cells in the plane
of shear and in the vorticity direction [24]. In a channel
with cross section 190� 99 �m2, a nearly parabolic flow
with gradients of velocity in both directions y and z was
produced. The averaged concentration profile observed in
the z direction therefore widens due to hydrodynamic
repulsion in the local shear and vorticity directions. By
varying the initial position y0 of the RBC stream, one can
vary the weight of the f2 and f3 contributions, with a
contribution of f3 only for y0 ¼ 0 and an increasing con-
tribution of f2 as the stream is moved towards the channel
edges. With the additional simplification that in the y
direction, all particles experience the velocities and shear
of position y0 (narrow cloud approximation), one gets an
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FIG. 3 (color online). (a) concentration profiles �ðx; yÞ in four
sections of flat channel with 2h ¼ 53 �m, for a cloud with w0 ¼
41:0 �m and N0 ¼ 8:1 �m. Full lines show fits with parabolic
profile. (b) Cloud half-width w as a function of position x along
the channel for several initial conditions and for two different
thicknesses (empty symbols, 2h ¼ 53 �m, _�max¼113s�1; full
symbols, 2h ¼ 101 �m, _�max ¼ 211 s�1). Full lines show lin-
ear fit for w3 as suggested by Eq. (3).

FIG. 2. Example of RBC diffusion in a flat channel. Initial mean volume fraction is around 15%.
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equation similar to Eq. (3), with coefficient A that now

depends on y0, A ¼ hf2u2yþf3u
2
z

ðu2yþu2z Þ1=2i
9N0R

2

4
ffiffi
2

p huðy0Þi , where ui is the

partial derivative of u according to variable i ¼ y, z at
position (y0, z) [41]. Considering narrow initial clouds
(w0 ’ 6 �m) consistent with the above simplification,
the scaling with exponent 1=3 is confirmed by the experi-
ments and the resulting effective diffusion coefficient A
increases with y0 (Fig. 5). Within the experimental uncer-
tainties, A does not depend on the mean shear rate,
though the RBC dynamics and the consequent interaction
trajectories might be affected by the shear rate value
[11,43,44]. A fit of the data by the expected expression
yields f3 ¼ 0:07� 0:01 and f2 ¼ 1:7� 0:1. The f3 value
is lower than the one previously found. Around y0 ¼ 0,
shear intensity in the y direction vanishes, as does colli-
sion rate, and diffusion is expected to be similar to the
one observed in the flat channel, and controlled by f3.
However, w0 is finite, and the three-dimensional shear
also controls the mean orientation of RBCs; therefore,
the detail and intensity of their interactions, and finally
the resulting diffusion coefficient f3, may be affected.
As for drops [24] or rough spheres [22], f2 is found to be
larger than f3. In the case of drops, experiments of

Ref. [33] show that f2 ’ 0:2, which is comparable to
our f2 ¼ 0:77, obtained after rescaling by the effective
volume. Finally, these down-gradient diffusion coeffi-
cients should be compared to the self-diffusion coeffi-
cients. Self-diffusion in the vorticity direction was
studied in Ref. [30], but the diffusion coefficient in this
very flat geometry (12-�m thick channel) is surprisingly
found to be independent from concentration. By lack
of similar scaling, comparison is therefore not possible.
Self-diffusion in the shear direction is characterized
by Ds= _� of order 1 �m2 for � ’ 40% [4,28,29,45].
We find f2R

2� ’ 9 �m2 a consistent result since this
down-gradient coefficient is expected to be a few times
larger: 6 times for rough spheres [22] and 5 times for
drops [33].
Conclusion.—Our quantitative investigation of the

migration of tumbling RBCs in shear flow shows that
wall-induced lift follows the same scaling law as parti-
cles with fixed orientation (e.g., tank-treading vesicles),
and a significant amplitude has been measured. The
necessary symmetry breaking is made possible by RBC
deformability. In blood vessels, lift is balanced by shear-
induced diffusion. The spreading of a stream of blood
cells in channel flow is characterized by a subdiffusive
behavior with exponent 1=3, a phenomenon expected to
be generic to systems where advected particles undergo
short-range pairwise hydrodynamic interactions or colli-
sions. For RBCs, this scaling still holds at significant
local concentrations, where multibody interactions have
to be considered in other systems such as rigid beads.
We provide previously unpublished values of the down-
gradient shear-induced diffusivities of RBCs, with a
marked difference between the diffusivity f2 in the
direction of shear and f3 in the vorticity direction. This
strong anisotropy should be explained by a detailed
analysis of RBC collisions at the microscopic scale.
Our study pertains to dilute to semi-dilute suspensions
of RBCs for which the convective lift flux due to lift of
isolated cells and the diffusive lift flux can be readily
balanced to get the concentration profile of the suspen-
sion in channel flow. At higher hematocrits, though, the
screening effect on the lift due to other cells, as well as
the local rheology of the concentrated suspension that
modifies the flow profile, should be considered.
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Agency–Programmes de Développement d’expériences)
Contract No. 90171.

0 2 4 6 8 10 12
0

1

2

3

4
0 1 2 3 4 5 6 7 8 9 10

0.0

0.4

0.8

1.2

(a)

(b)

FIG. 4 (color online). Effective diffusion coefficient A as a
function of N0=h in a flat channel. (a) 2h ¼ 53 �m and 2h ¼
101 �m (data restricted to initial maximal concentration be-
tween 3 and 16%, resp. 2 and 12% and N0 < 3:7 �m). Full line
shows linear fit. (b) 2h ¼ 101 �m. Data are extended to initial
maximal concentration 30% and N0 < 19:8 �m (curve with the
largest slope in Fig. 3). Full line shows quadratic fit.
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