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We present direct statistical simulation of jet formation on a � plane, solving for the statistics of a fluid

flow via an expansion in cumulants. Here we compare an expansion truncated at second order (CE2) to

statistics accumulated by direct numerical simulations. We show that, for jets near equilibrium, CE2 is

capable of reproducing the jet structure (although some differences remain in the second cumulant).

However, as the degree of departure from equilibrium is increased (as measured by the zonostrophy

parameter), the jets meander more and CE2 becomes less accurate. We discuss a possible remedy by

inclusion of higher cumulants.
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Jets are relatively narrow bands of fast-flowing fluid
moving coherently in one direction. They are ubiquitous
in nature, found in Earth’s oceans and atmosphere, the
outer layers of gas giant planets, the interior of stars, and
laboratory experiments with fluids and plasmas [1]. Jets
play an important role for these fluids, and it is therefore
important to understand the mechanism(s) that govern
their formation. Sometimes jets are driven by energy
input at small spatial scales; the question then is how
this energy is transferred into large-scale coherent motion.
Two competing mechanisms have been proposed, both of
which rely on the interaction of turbulence and rotation.
The first involves the scale-by-scale transfer of energy
known as the inverse cascade [2]. Large-scale vortices are
known to be generated by this mechanism. The other
mechanism relies on direct transfer of energy to the
largest scales. It is hard to disentangle these two mecha-
nisms in experiments and in simulations. Direct calcula-
tion of statistics and quasilinear direct numerical
simulation (DNS) calculations have demonstrated that
jets can be formed by the direct mechanism, not relying
on an inverse cascade [3–6]; see also Ref. [7].

Nonequilibrium statistical mechanics can be used to
understand universal aspects of fluids. Isotropic, homoge-
neous, turbulence is at present beyond the reach of a
complete statistical theory. By contrast, inhomogeneous
flows such as jets may be accessible to direct statistical
simulation (DSS), that is, methods solving directly for the
statistics of the flow [8]. DSS offers the possibility of a
deeper understanding of fluid dynamics, as well as a prac-
tical speedup in obtaining statistics [5]. In the limit of small
driving and dissipation, equilibrium statistical mechanics
is a powerful tool for understanding quasi-two-
dimensional flows (for a review, see Ref. [9]). Here and
below the word ‘‘equilibrium’’ refers to the limiting case
for which the rates of forcing and dissipation go to zero.

Away from equilibrium, stochastic structural stability the-
ory (SSST) [4,10,11] is one approach that has been
explored to understand the formation and maintenance of
jets. Here we instead investigate systematic expansion in
equal time, but spatially nonlocal, cumulants of the flow.
When truncated at second order, the cumulant expansion
(denoted CE2) is closely related to SSST [6], but it is only
the starting point for a perturbative expansion in higher
cumulants.
This Letter examines the accuracy of DSS at CE2 as a

representation of the statistics of turbulent flows driven
away from equilibrium. CE2 includes the interaction of
mean flows with eddies to drive eddies and that of eddies
with eddies to drive mean flows, but removes the inter-
action of eddies with eddies in the evolution equation for
the eddies [12], an interaction that has been termed the
eddy-eddy nonlinearity by Srinivasan and Young [6].
Here eddies are formally the fluctuations about the zonal
mean flow. It has been argued [9,13] that CE2 is an exact
representation in the quasiequilibrium limit, but the
domain of validity of such a truncation remains largely
untested. We conduct numerical experiments to investi-
gate the accuracy of DSS at CE2 for systems removed
from quasiequilibrium by considering a model problem of
the driving of jets by small-scale forcing on a � plane.
This system has been studied extensively within the
framework of DNS in both the fully nonlinear and quasi-
linear regimes [6,14]. Although this model is the simplest
that includes all the requisite features for our purposes,
i.e., anisotropy, nontrivial long-range correlations, and
mean flows, we note that it is a rigorous test of statistical
methods in that it is stochastically driven and translation-
ally invariant in two directions, with only the emergence
of jets spontaneously breaking the latitudinal symmetry
[6] and leading to inhomogeneity. We return to this in the
discussion at the end of the Letter.
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The � plane we use is periodic in both x (longitude) and
y (latitude), with the domain of size 2�� 2�. The motion
of the incompressible fluid is damped by a single friction �
and by small-scale dissipation that absorbs structures at the
finest scales. (Some models examined in Ref. [11] have
friction damping the fluctuations 10 times greater than that
slowing the zonal mean flow.) The fluid is driven by
random (stochastic) forcing �. This type of stochastic
forcing is widely used as a model of small-scale processes
that inject energy into the fluid, with the small and fast
scales acting as a random influence on the large and slow
scales [15–17]. The time evolution of the relative vorticity

� � ẑ � ð ~r� ~uÞ is given by, for example [18],

@t� þ Jðc ; �Þ þ �@xc ¼ ��� þ �r2� þ �; (1)

� ¼ r2c ; (2)

where Jða; bÞ ¼ @xa@yb� @ya@xb. Here c is the stream

function and the fluid velocity ~u ¼ ðu; vÞ ¼ ð�@yc ; @xc Þ;
we have set the deformation radius of the flow to be
infinite. The forcing is random with a short (but nonzero)
renewal time (0:1 � rt � 1) and concentrated in the spec-
tral band of wave numbers kmin � jkxj, jkyj � kmax (for

these runs kmin ¼ 7, kmax ¼ 10). The amplitude of the
forcing is chosen from a Gaussian distribution with stan-
dard deviation a�. This is a popular choice of forcing; a

detailed discussion of the role of forcing in DNS of such
problems is given in Ref. [14].

Rhines [19], who investigated the unforced system,
demonstrated how correlations between nonlinear Rossby
waves could lead to the generation of zonal flows and
identified the scale at which zonal flows become important
in mediating the dynamics of these waves (see, e.g.,

Ref. [20]). This ‘‘Rhines scale’’ is given by LR ¼
ð2U=�Þ1=2, where U is the rms velocity of the flow, and
occurs when the second and third terms of Eq. (1) are
comparable (and are comparable with the frictional term
[21]). There has been much research into the importance of
this length scale for the ultimate latitudinal scale of jets
(see, e.g., Ref. [22] and the references therein), but it is also
becoming clear that the dynamics of zonation is also
controlled by another length scale L" [23], which measures
the intensity of the forcing relative to the background
potential vorticity gradient. For the simple �-plane model

L" ¼ 0:5ð"=�3Þ1=5, where " is the energy input rate of the
stochastic forcing �.

The ratio of these two length scales has been proposed,
for models with small-scale forcing, to play a critical role
in determining the strength and stability of jets [18,24],
for cases where the same damping is applied to the mean
flows and the turbulent fluctuations. This local measure,

termed the zonostrophy index, is given by R� � LR=L" ¼
U1=2�1=10=21=2"1=5. In general, if the zonostrophy index is
large, then strong stable jets are found, while for small R�

the jets are weaker, meander more, and no staircase is
formed [14]. The zonostrophy index is therefore a measure
of how far the system is driven out of equilibrium. Note
that R� can also be written (on balancing the energy input

with the dissipation via friction "� �U2) in terms of the
ratio of an advective time on the Rhines scale to a dis-

sipative time scale (F� ¼ �LR=U), i.e., R� ¼ F�1=5
� .

Hence the quasiequilibrium limit is given by R� ! 1.

Recent estimates have put R� between 5 and 6 for flows

on the surface of Jupiter [25], while R� � 2 for oceanic jets

[18]. We note that the zonostrophy index might not be the
only parameter controlling the dynamics of the jets. It has
been shown that if the forcing length scale remains impor-
tant, then the dynamics is controlled by two nondimen-
sional parameters separately [6], and there is a regime
given by a chain inequality for which R� is the only

important nondimensional parameter [18]. Nonetheless,
even in this regime R� does give a measure of lack of

equilibrium.
DNS is performed using a pseudospectral scheme opti-

mized for parallel machines [26]. For these simulations we
utilize resolutions of up to 20482. The forcing is applied at
moderate scale (with rta

2
� ¼ 0:01 for all calculations) and

the system is evolved from rest until a statistically steady
state is reached. Figure 1 shows a snapshot of the vorticity
and zonally averaged vorticity for a state with 3 zonal jets.
For this calculation R� ¼ 2:12 and the jet is well removed

from the quasiequilibrium limit. We note that this limit is
difficult to simulate in DNS, requiring long integrations.
Nonetheless, the Hovmöller diagram in Fig. 2(a) of the
(t, y) dependence of the mean flow together with a running
time average calculated from the midpoint of the calcula-
tion shows that the zonal flows do not meander too much in
space and well-defined averages can be obtained—though
we note that lengthy integrations of the dynamics are
required for meaningful flow statistics. Figure 2(b) shows

FIG. 1 (color online). Snapshot density plot of vorticity to-
gether with zonal mean vorticity profile of jets found by DNS.
The parameters are � ¼ 10�3, � ¼ 10�4, � ¼ 16. For these
parameters, R� ¼ 2:12.
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the corresponding diagram when R� has been reduced to

1.98, which is achieved here by lowering �. For this case,
even further from quasiequilibrium, the jets are still rela-
tively steady, but the Rhines scale has changed sufficiently
that now only two jets fit in the domain. This is consistent
with the values of LR given in the figure caption. For
Fig. 2(c) R� has been reduced to R� ¼ 1:24, achieved by

increasing the friction. Here the jets meander significantly
and merge, showing a large degree of spatiotemporal
variation. In this respect they have the characteristics of
observations and simulations of oceanic jets [27,28].
At different times either four or five jets appear, but on
average there are five jets. Because of the temporal varia-
bility, the time average of the jet velocity is much smaller
than the instantaneous jet speeds.

Expansion of equal-time cumulants at order CE2 is
straightforward for Eq. (1). Let r ¼ ðx; yÞ and r0 ¼
ðx0; y0Þ and adopt a Reynolds decomposition by setting
�ðrÞ ¼ h�ðrÞi þ � 0ðrÞ, where the angle brackets imply
either an ensemble average or an average over longitude
(x). We define the first cumulants as c� ¼ h�ðrÞi ¼ c� ðyÞ
and cc ðrÞ ¼ hc ðrÞi ¼ cc ðyÞ, where the relationship

between these is given by c� ¼ @2yycc . We may then define

the second cumulants as follows: c�� ðr; r0Þ ¼ h� 0ðrÞ� 0ðr0Þi,
and note that for this system c�� depends on the two local

latitudes and the difference between the longitudes � ¼
x� x0, i.e., c�� ðr; r0Þ ¼ c�� ðy; y0; �Þ [12]. Corresponding

definitions arise for the derived second cumulants cc �

and c�c , i.e., cc � ðr; r0Þ ¼ hc 0ðrÞ� 0ðr0Þi ¼ cc � ðy; y0; �Þ
and similarly for c�c ðy; y0; �Þ. With these definitions the

equations for cumulant hierarchy, truncated at second
order, are

@tc� ¼ �ð@y þ @y0 Þ@�cc � j�!0
y!y0 � �c� þ �@2yyc� ; (3)

@tc�� ¼ @ycc@�c�� � @y½c� ðyÞ � �y�@�cc �

� @y0cc @�c�� þ @y0 ½c� ðy0Þ � �y0�@�c�c
þ �ðr2 þr02Þc�� � 2�c�� þ �: (4)

Here � is the covariance matrix of the stochastic forcing
that enters into Eq. (4) as a deterministic source term
localized at the same wave numbers as for the DNS [5]
and with an amplitude a� that is given a� ¼ rta

2
�.

Equations (3) and (4) constitute a realizable closure, and
in the absence of damping and forcing, conserve linear
momentum, energy, and enstrophy. Equations (3) and (4)
are integrated forward in time using a pseudospectral
integrating factor or Adams-Bashforth numerical scheme.
The integrations were performed at a typical resolution of
16� 128. Restricting jkxj< 16 does not amount to a
further approximation beyond CE2, because, for this prob-
lem, at level CE2 only modes with zonal wave numbers
less than those of the stochastic forcing are excited.
Recall that for R� large the system is in quasiequili-

brium, dominated by strong jets, and CE2 should provide
an accurate representation of the statistics of the fluid
flows. A typical evolution of the cumulant system is shown
in Fig. 3(a). After some initial transients where jets are
driven with a relatively small latitudinal extent, broader
jets emerge via a series of jet mergings. Similar jet-
merging behavior has been observed both in DNS and
in the strong jet simulations of SSST [10], and also in
the weakly nonlinear description of zonal jets [29]. The
system eventually reaches a statistically steady state, rep-
resented by a simple fixed point of the cumulant equations.

FIG. 2 (color online). Hovmöller diagrams of zonal mean
relative vorticity versus time from DNS simulations.
(a) Parameters as for Fig. 1 with R� ¼ 2:12. (b) Parameters as

for (a) but � ¼ 8 and R� ¼ 1:98; here LR is increased by a

factor 3=2 from that in (a). (c) Parameters as for (a) but � ¼
10�2 and R� ¼ 1:24; here LR is decreased by a factor 3=5 from

that in (a). A running time average commences at the midpoint
of each diagram.

FIG. 3 (color online). Hovmöller diagrams of relative vorticity
from CE2. (a) Parameters as for Fig. 2(a). (b) Parameters as
for Fig. 2(c).
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The calculations were repeated at a range of R� and

compared with the (zonal and time averages of the) DNS
solutions described earlier. Figure 4 shows comparisons of
the zonal velocity in the jet from DNS averaged over both x
and time with that achieved from DSS at CE2 for R� ¼
2:12 and R� ¼ 1:98. The agreement in the first cumulant at

these levels of disequilibrium is good; CE2 reproduces
both the correct number of jets and their strength, although
CE2 slightly overestimates the average jet strength—a
characteristic in common with quasilinear DNS of jets
[6]. However, close examination of the second cumulant
reveals that CE2 struggles to reproduce the cross-
correlation patterns (or teleconnections) from DNS for
these parameters. The left-hand panel of Fig. 5 shows the
second cumulant as accumulated from the DNS solution of
Fig. 1. The figure shows the cross correlation of the vor-
ticity statistics with respect to a test point. The second
cumulant is localized in latitude, with some recurrent
correlations occurring on the jet spacing, while the struc-
ture in longitude contributions both from wave number
kx ¼ 1 and from the scale of the forcing. Examination of
the spatiotemporal dynamics of the system indicates that
the kx ¼ 1 contribution arises from a domain-scale mean-
dering of the jet, termed ‘‘satellite modes’’ by Ref. [30].
The right-hand panel of Fig. 5 shows that CE2 reproduces

the contributions to the second cumulant at the longitudinal
scales of the forcing, but is incapable of reproducing the
contribution from the satellite modes, when the system is
this far from equilibrium. Interestingly these modes are
also absent from quasilinear DNS calculations [6], which
would seem to indicate that they arise as a result of eddyþ
eddy ! eddy interactions.
For systems driven even further from equilibrium, CE2

struggles not only to reproduce all the structures of the
second cumulant, but also the number of jets and their
strength. As noted earlier, for smaller R� the jets are more

intermittent and meander more. Although zonal averages
can be calculated, the constant meandering of the jets in
latitude reduces the average jet strength. CE2 eventually
settles down to a fixed point though we do not believe this
to be a unique solution. The solution overestimates the
strength of the jets and therefore the Rhines scale associ-
ated with them; hence, CE2 has a tendency to underesti-
mate the number of jets as shown in Figs. 3(b) and 4(c).
This Letter has demonstrated that DSS as approximated

by CE2 performs well in directly calculating the statistics
for �-plane turbulence in quasiequilibrium. It confirms the
earlier result [5,6] that zonal jets do not require an inverse
cascade to be driven, but can arise as the result of Reynolds
stresses alone. However, and importantly, we have shown
that as the system is removed further from equilibrium by
reducing the zonostrophy parameter R�, CE2 can signifi-

cantly overestimate jet strengths and predict the incorrect
number of jets. We hypothesize that for such systems
higher order cumulant expansions are required. If truncated
at third order (CE3) the cumulant expansion includes
eddyþ eddy ! eddy interactions and should perform bet-
ter in predicting statistics for out-of-equilibrium systems.
The potential utility of CE3 has been demonstrated for the
problems of an isolated vortex [31] and fluid flow relaxing
to a prescribed jet [32]. We conclude by noting that
although we have stressed the limitations of CE2, we
believe that the local �-plane system driven stochastically
is one of the stiffest tests of this method; it is very difficult
in both DNS and DSS to reach the quasiequilibrium limit,

FIG. 4. Comparison of mean zonal velocity from DNS (dashed lines) and CE2 (solid lines) for parameters as in
Figs. 2(a)–2(c) for which R� ¼ 2:12, 1.98, and 1.24.

FIG. 5. Second cumulant c�� as calculated from DNS (left)
with R� ¼ 2:12 and the corresponding CE2 solution (right).

Cross correlation with respect to a test point located at (�, 4:7).
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although progress may be achieved by utilizing DSS that
implements semi-implicit time-stepping. Nevertheless,
CE2 provides a good qualitative description of the first
cumulant for systems where the important competing
effects arise from inhomogeneity, anisotropy, and turbu-
lent fluctuations about a nontrivial basic state.
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