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We propose the following model equation, ut þ 1=2ðu2 � uusÞx ¼ fðx; usÞ that predicts chaotic shock
waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half

line, x < 0, and the shock is located at x ¼ 0 for any t � 0. Here, usðtÞ is the shock state and the source

term f is taken to mimic the chemical energy release in detonations. This equation retains the essential

physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling

wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our

knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos

arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and

a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
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Shock waves arise in a wide range of physical phe-
nomena: gas dynamics, shallow water flows, supernovae,
stellar winds, traffic flows, quantum fluids, and many
others [1–3]. The theory of shock waves has a rich history
beginning with the fundamental contributions by Riemann
in the mid-19th century. Nevertheless, due to the complex-
ity of the underlying governing equations, many open
questions remain, especially in problems involving
dynamical interactions of shock waves with magnetic
and gravitational fields, chemical reactions, and radiation.

Our focus in this Letter is on a fascinating feature of
shock wave propagation in chemically reacting media:
shock wave chaos, in which the shock speed oscillates
chaotically. This phenomenon occurs in gaseous detona-
tions as seen in numerical simulations of reactive Euler
equations [4,5]. In detonations, a shock wave propagates in
a combustible medium (for example, a gaseous mixture of
hydrogen and air), ignites the medium, and is sustained by
the energy released in the burning mixture. During the
chemical reaction, the mixture temperature rapidly rises
and, because the gas expansion is slow, the resulting pres-
sure buildup gives rise to strong compression waves. These
waves can reach the shock because the flow immediately
behind the shock is subsonic. The detonation-shock propa-
gation is sustained by those pressure waves in the reaction
zone that reach the shock.

The classical model of detonation, pioneered by
Zel’dovich, von Neumann, and Döring (ZND model,
[2,6]), is based on a system of reactive Euler equations in
one dimension, that consists of equations for the balance of
mass, momentum, energy, and the fuel concentration. This
system describes four families of waves: one acoustic and
two material-entropic waves that propagate away from the

shock, and one acoustic wave that propagates toward the
shock. These waves interact nonlinearly with each other
and with the shock and can amplify due to the chemical
energy release. It is these interactions that are responsible
for the detonation-wave dynamics, wherein the shock
oscillates in a periodic or chaotic fashion [5]. The main
questions in understanding the physical mechanism of
these oscillations are: How does this wave amplification
occur, and which wave interactions are responsible for the
chaos? Do all four families of waves in the reactive Euler
equations have to be accounted for or is there a simpler
mechanism?
These difficult questions are still largely open. However,

the model that we propose here suggests that the mecha-
nism is in fact rather simple. We show that the complex
dynamics of one-dimensional detonations are captured by
considering only two wave families: very fast waves
reflecting off the shock into the reaction zone and slow
waves moving from the reaction zone toward the shock;
moreover, the fast waves can be assumed to be infinitely
fast [7]—the model still retains all the essential features.
The infinite-speed assumption leads to a single equation of
a very unusual type: a nonlocal first-order hyperbolic
partial differential equation. Its solutions provide a strong
indication that there exists a simple mechanism hidden in
the Euler equations that is responsible for the complex
behavior of reactive shocks in gas dynamics.
Before introducing our model, we recall that Burgers [8]

proposed his equation, ut þ uux ¼ �uxx (subscripts t and x
indicate partial derivatives and � � 0 is a viscosity coeffi-
cient) in the hope of capturing the essential nature of
turbulence with a simple and tractable model. Following
a similar idea, Fickett [9,10] and Majda [11] introduced
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simple analog models for detonations in the hope of gain-
ing some insight into their behavior. Fickett’s model is a
modification of the Burgers’ equation and takes the form:

utþ 1

2
ðu2 þ q�Þx ¼ 0; �t ¼ !ð�; uÞ; (1)

where u is the primary unknown mimicking density, tem-
perature, or pressure, ! is a given chemical rate function,
and q > 0 is a constant measuring the total chemical
energy release (i.e., q� is a fraction of energy released at
any given time). The chemistry here is represented by the
reaction reactants ! products, with �measuring a normal-
ized concentration of the reaction products; it varies from
� ¼ 0 at the shock to � ¼ 1 in the products. Even though
Fickett’s model has been shown to reproduce some of the
features of detonations [9,10,12], the key unstable charac-
ter of detonations was not seen in this model until
Radulescu and Tang [13] extended it to a two-step chemi-
cal reaction with an inert induction zone followed by an
energy-releasing reaction zone.

To underscore the physical origins of our model, we
show now that it is closely related to the theory of
Rosales and Majda [14], which is (in contrast to the
ad hoc models of Fickett and Majda) based on weakly
nonlinear asymptotic approximations of the Euler equa-
tions. In Ref. [14], the following reduced system for the
evolution of detonations was derived:

u� þ 1

2
ðu2Þ� ¼ q��; �� ¼ !ð�; uÞ; (2)

where � and � are time and space, respectively, and u is a
temperaturelike variable. The reaction rate ! was chosen
to be of the ignition-temperature type with !> 0 if u > 0
and! ¼ 0 if u < 0. The validity of the model derivation is,
however, not restricted to this type of rate function. The
key difference between the Fickett-Majda models and
Eq. (2) is that the rate equation in Eq. (2) involves the
space derivative as opposed to the time derivative in Eq. (1).
Physically, this means that in Eq. (1), the rate equation does
not propagate any waves, while in Eq. (2), waves are
propagated instantaneously by the second equation.

For Eq. (2), consider a shock at � ¼ �sð�Þ, moving into a
uniform state ahead of the shock, where u ¼ 0 and where
there is no reaction, ! ¼ 0. Assume that the reaction is
triggered by the shock, and it is such that at � < �s, !
depends only on the shock state, us ¼ usð�Þ ¼ the value of
u immediately behind the shock, i.e., ! ¼ !ð�; usÞ. This
assumption is sometimes made in modeling condensed-
phase explosives [10]. The idea is that the reaction rate is
mostly determined by how hard the shock hits a fluid
element. Then, the rate equation in Eq. (2) can be inte-
grated to yield � as a function of � and us. Hence, the first
equation in Eq. (2) takes the form

u� þ 1

2
ðu2Þ� ¼ fð�� �s; usÞ; (3)

where f ¼ q�� vanishes for � > �s. The shock speed,

V ¼ d�=d�, follows from the Rankine-Hugoniot shock
condition [1], �V½u� þ 1

2 ½u2� ¼ 0, where the brackets ½��
denote the jump of the enclosed quantity across the shock
(the value behind minus the value ahead). Since ½u� ¼ us
and ½u2� ¼ u2s , it follows that V ¼ us=2.
Next, we change coordinates to the shock-fixed frame,

introducing x ¼ �� �sðtÞ and t ¼ �. Then, Eq. (3) yields
the following nonlocal partial differential equation:

ut þ 1

2
ðu2 � uusÞx ¼ fðx; usÞ; (4)

which must be solved in x � 0 and t � 0. Here, usðtÞ ¼
uð0; tÞ, the boundary value of the solution, is not prescribed
a priori, but follows by solving Eq. (4), as explained below.
The function f is chosen such that it mimics the typical
behavior of the reaction rate in reactive Euler equations,
with a maximum some distance away from the shock
(see, e.g., Ref. [2], p. 47). The location of this maximum
is chosen to depend sensitively on the shock—state a
common feature in the reactive Euler equations, where
the reaction rate depends exponentially on the temperature
as !� expð�E=RTÞ, with E the activation energy and R
the universal gas constant.
Equation (4) is thus a model for the reaction zone of a

detonation in coordinates attached to the leading shock. By
construction, this shock is located at x ¼ 0 at any time. We
also assume that the shock satisfies the usual Lax entropy
conditions [15], such that the characteristics from both
sides of the shock converge on the shock. In characteristic
form, Eq. (4) is written as du=dt ¼ fðx; usÞ along dx=dt ¼
u� us=2. Assuming that u ¼ 0 ahead of the shock, it
follows that us > 0 guarantees the Lax conditions.
Importantly, no boundary condition at x ¼ 0 is needed,
as the characteristics from x < 0 are outgoing, i.e.,
dx=dtjx¼0� ¼ ðu� us=2Þx¼0� ¼ us=2> 0. Note that us
measures the shock strength, because us ¼ ½u�.
The most unusual mathematical feature of Eq. (4) is that

it contains the boundary value of the unknown, usðtÞ. This
is in fact the main reason for the observed complexity of
the solutions and has a simple physical interpretation: the
boundary information from x ¼ 0 is propagated instanta-
neously throughout the solution domain, x < 0, while there
is a finite-speed influence propagating from the reaction
zone back toward the shock along the characteristics of
Eq. (4). In the Euler equations, this situation occurs in a
weakly nonlinear reactive shock wave, where the flow
behind the shock is nearly sonic relative to the shock
[14]. One family of acoustic characteristics is then nearly
parallel to the shock, representing the slow part of the wave
moving toward the shock. The other waves move away
from the shock and comprise the influence of the shock on
the whole postshock flow. This occurs on a much faster
time scale than the information flow toward the shock. At
leading order, in the limit considered in Ref. [14], this
yields an instantaneous effect.
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Returning to the analysis of Eq. (4), we can easily obtain
its steady-state solution, u0ðxÞ, by solving

1

2
ðu20 � u0u0sÞ0 ¼ fðx; u0sÞ; (5)

where the prime denotes the derivative with respect to x
and the subscript 0 denotes the steady state. The solution

is u0ðxÞ¼u0s=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20s=4þ2
R

x
0fðy;u0sÞdy

q

. The choice of

the steady-state shock strength, u0s¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
R

0
�1fðy;u0sÞdy

q

,

corresponds to the Chapman-Jouguet case in detonation
theory [2], since then the characteristic speed at x ¼ �1 is
u0ð�1Þ � u0s=2 ¼ 0, indicating that the sonic point is
reached at x ¼ �1. The steady solution can now be
written as

u0ðxÞ ¼ u0s
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Z x

�1
fðy; u0sÞdy

s

: (6)

Clearly, for u0ðxÞ to be real and bounded, we must require
that 0 � R

x
�1 fðy; u0sÞdy <1 for any x 2 ð�1; 0�. This

constraint means that the source term must have finite
energy and must be positive overall in order for the solu-
tions to make sense. Physically, this also means that the
energy must be released rather than consumed to sustain
the shock.

Now, we explore the fully nonlinear and unsteady solu-
tions of Eq. (4) for the particular case when

f ¼ q

2

1
ffiffiffiffiffiffiffiffiffiffi

4��
p exp

�

�½x� xfðusÞ�2
4�

�

: (7)

We choose xf¼�kðu0s=usÞ� to make the position of the

peak of f to be a sensitive function of us; here, q > 0, k > 0,
� � 0, and �>0 are parameters. Next, we rescale the
variables as follows: u by u0s, so that the dimensionless
steady-state shock strength is 1, length by l ¼ k, and time
by � ¼ l=u0s. From Eq. (6), putting all the dimensionless
variables in and rescaling � by l2, we obtain (keeping the
same notation for the dimensionless variables and
parameters)

u0ðxÞ ¼ 1

2

2

41þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ erfððxþ 1Þ=2 ffiffiffiffi

�
p Þ

1þ erfð1=2 ffiffiffiffi

�
p Þ

s

3

5; (8)

where erfðxÞ is the error function. The dimensionless form
of Eq. (4) is

ut þ 1

2
ðu2 � uusÞx ¼ a exp

�

�ðxþ u��
s Þ2

4�

�

; (9)

where a ¼ 1=½4 ffiffiffiffiffiffiffiffiffiffi

4��
p ð1þ erfð1=2 ffiffiffiffi

�
p ÞÞ�. Equation (9)

now contains only two parameters: �, reflecting the
shock-state sensitivity of the source function, f (an analog
of the activation energy in detonations), and�, reflecting the
width of f (an analog of the ratio between the reaction-zone
length and the induction-zone length).

In the computations below, we use the numerical algo-
rithm of Ref. [4], which is fifth order accurate in space and
third order accurate in time. Our domain has length 10 with
3000 uniformly spaced grid points on it. We find this
domain to be sufficiently large for the present calculations,
but larger domains may be required for other parameters.
We note, however, that due to the rapid decay of fðx; usÞ as
x ! �1, all the dynamics of the solutions are localized in
the region close to the shock, x ¼ 0. This is shown in
Fig. 1, wherein the characteristics are seen to be almost
vertical (on average) far from the shock, indicating that the
far-field influence on the shock dynamics rapidly dimin-
ishes with the distance from the shock. The precise nature
of the solutions shown in Fig. 1 (periodic at � ¼ 4:7 and
chaotic at� ¼ 5:1) is confirmed in Fig. 2 (left) for the limit
cycle at � ¼ 4:7 and Figs. 3–5 for the chaotic solution at
� ¼ 5:1.
We fix � ¼ 0:1 and vary � in all the calculations. Our

simulations start with the steady-state solution perturbed
by numerical noise. Below the critical value�c � 4:04, the
solution is found to be stable. This critical value is also in
agreement with a linear stability analysis of the problem
(to be reported elsewhere). At � ¼ �c, a Hopf bifurcation
occurs and a limit cycle is born (the shock strength us
oscillates periodically in time). As � is increased from
�1 ¼ 4:70 to � ¼ 4:85, a period doubling occurs, see
Fig. 2. Remarkably, as � is increased further, we observe
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FIG. 1 (color online). The long-time spatiotemporal profiles of
uðx; tÞ (color) for the periodic solution at � ¼ 4:7 (left) and the
chaotic solution at � ¼ 5:1 (right); � ¼ 0:1. The white curves
are the characteristics of Eq. (9) given by _x ¼ u� us=2. At any
fixed t, uðx; tÞ generally decreases away from x ¼ 0.

FIG. 2. The period-one and period-two limit cycles in the
plane of the shock strength usðtÞ vs _us at two different values
of � and � ¼ 0:1.
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a sequence of period-doubling bifurcations that leads to
chaotic solutions at � that are slightly larger than 5, as seen
in Fig. 3. The onset of chaos apparently follows the same
scenario as in the logistic map [16,17]. The bifurcation
diagram in Fig. 3 was computed by solving Eq. (9) until
t ¼ 6000 for the range of � from 3.9 to 5.2, with an incre-
ment of 0.005. For each �, we found the maxima of usðtÞ
between t ¼ 5000 and t ¼ 6000 and plotted them in the
figure. Based on a sequence of three period doublings, we
estimated the Feigenbaum constant, � [18], to be about 4.5.
This is in rough agreement with the well-known value of
� ¼ 4:669 . . . for the logistic map, as well as that found for
detonations [4,5,13,17]. Figure 4 shows the chaotic attrac-
tor at � ¼ 5:1, in the (us, _us, €us) space (the dots indicate
the time derivatives). Its resemblance to the Rössler attrac-
tor [19] is evident. Interestingly, when plotting the local
maxima of us versus their prior values (i.e., the Lorenz map

[20], see Fig. 5, the data fall (almost) on a curve. The curve
also resembles the one for the Rössler attractor. These
observations suggest that the shock wave chaos arising
from Eq. (4) is controlled by a low-dimensional process
similar to that of a simple one-dimensional map—just as it
is the case with the Lorenz and Rössler attractors [17].
The present model and Ref. [13] provide examples

demonstrating that the models of Fickett [9] and Majda
[11] and the theory of Rosales and Majda [14] do, in fact,
contain the complicated instabilities that they were intro-
duced to capture. Here and in Ref. [13], the underlying
physics of the detonation phenomenon are faithfully rep-
resented, which is the main reason for the observed rich
dynamics. Our results contrast a long-held belief that such
simplified models may not possess the necessary complex-
ity and may only exhibit stable shocks (see Ref. [21] and
references therein for related mathematical results).
Stability is indeed the case when the reaction rates lack
sufficient sensitivity to the shock state. However, once such
sensitivity is present and the feedback mechanism between
the shock and the reaction zone is true to the physics of
detonation, these simplified models do possess intricate
dynamics akin to that of real detonations.
The difficulty of obtaining a reduced theory of detona-

tion has even led to speculating an (admittedly ‘‘overpessi-
mistic’’) possibility that ‘‘the phenomenon of detonation
structures belongs to the ‘‘no theory’’ category because it
might not be reducible to less than the compressible reac-
tive Euler equations’’ (Ref. [22], p. 665). Our model is
strong evidence that this is not so. Detonation can be
described by theories that are simpler than the reactive
Euler equations; in fact, they can be as simple as one scalar
equation. We hope that future research in this direction will
further demonstrate the richness and relevance of such
simplified models, especially going beyond the simplest
one-dimensional model introduced in this work, toward
many complex problems in detonation and shock wave
physics.

FIG. 4. The chaotic attractor in the (us, _us, €us) space; � ¼ 5:1.

FIG. 5. The Lorenz map showing consecutive local maxima
(uns , u

nþ1
s ) of the shock strength, usðtÞ, over large times (from

t ¼ 3000 to t ¼ 6000) for the chaotic case at � ¼ 5:1.

FIG. 3. The long-time values of the local maxima, umax
s , of the

shock strength as a function of �.
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