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We study analytically, numerically, and experimentally the nonlinear symmetry breaking induced by

broken reflection symmetry in an optical fiber system. In particular, we investigate the modulation

instability regime and reveal the key role of the third-order dispersion on the asymmetry in the spectrum of

the dissipative structures. Our theory explains early observations, and the predictions are in excellent

agreement with our experimental findings.
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In the last decades there has been a tremendous amount
of interest in the role of advection (drift) in pattern for-
mation [1,2]. Its impact on nonlinear dynamical systems
has been intensively studied in such diverse fields as hydro-
dynamics [3], plasma physics [4], traffic flow [5], and
nonlinear optics [6], forming a highly multidisciplinary
research area. Advection is modeled by odd term deriva-
tives that break the reflection symmetry of the equation
under study. The most studied consequence of advection
is the classification of two different types of instabilities
arising in such systems namely convective and absolute
instabilities [7]. In the convective region, localized pertur-
bations grow in a comoving frame but are drifted out of the
system in the absence of a continuous source of noise.
Observable patterns are consequently called noise sus-
tained structures [8]. In the absolute region, however,
such drifting perturbations grow with time at any spatial
position and therefore affect the system everywhere. Here,
we focus on another important consequence of advection
on pattern formation in nonlinear systems, the asymmetry
of the generated nonlinear solutions. This nonlinear sym-
metry breaking has been theoretically studied in the
Ginzburg-Landau [9,10], the Swift-Hohenberg [11] and
reaction-diffusion [12] equations. Experimental observa-
tions of these asymmetric solutions have been performed in
Taylor-Couette flows [13], reaction-diffusion systems [14],
and optical fiber resonators [15,16].

We propose, to the best of our knowledge, the first
complete characterization (analytical, numerical, and ex-
perimental) of such nonlinear asymmetric solutions, pro-
viding a deeper understanding of the origin of the observed
asymmetries. Our focus lies in the field of fiber optics,
where the advection term (third-order derivative) naturally
appears when the second-order dispersion of the fiber
mode is small. By tuning that convective parameter, we
evidence an unexpected resonancelike behaviour of the
asymmetry. We believe this striking feature is not limited
to our particular system, and our conclusions can be
extended to nonlinear systems where an odd-order deriva-
tive strongly impacts the dynamics.

We consider the modulation instability regime of a non-
linear high finesse fiber resonator that is well described by
the mean field Lugiato-Lefever equation [17]. We are
interested in the region of low group velocity dispersion,
where the third-order dispersion (TOD) has to be taken into
account, breaking the reflection symmetry (� ! ��).
Nonlinear symmetry breaking induced by the TOD has

recently attracted a lot of attention in fiber systems, both
dissipative [16,18] and conservative [19]. However, there
still lacks an analytical investigation allowing a better
understanding of this asymmetry in the nonlinear regime.
Here, we provide analytical expressions of the TOD
induced asymmetry and compare them to experimental
findings, showing excellent agreement.
We will first present the experimental results that have

motivated our work. We will then present our analytical
method and finally compare both with numerical sim-
ulations. Most experimental investigations of nonlinear
dynamics in fiber cavities are conducted under pulsed
pumping conditions [15,16] because of the high peak power
available and because the stimulated Brillouin scattering
threshold is strongly increased when using short pulses.
While this solution has allowed us to experimentally
investigate the dynamics of these systems, a quantitative
comparison with analytical results and the simplest models
is usually hard to achieve. Hence, based on a previously
reported setup allowing the effective suppression of stimu-
lated Brillouin scattering [20], our experiments were
carried out with a continuous wave pump.
The experimental setup is depicted in Fig. 1. The cavity

is mainly made of a 102-m-long dispersion-shifted fiber
(DSF), a varying section of a standard single mode fiber
(SMF), and a 90=10 input coupler. An intracavity isolator
(60 dB) is used to avoid stimulated Brillouin scattering,
and a piezoelectric stretcher connected to a proportional-
integral-derivative controller allows for the active stabili-
zation of the cavity length on the power of the first
harmonic corresponding to a given detuning [20,21]. The
nonlinear coefficient of the DSF is 2:6 ðW kmÞ�1, and the
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total losses inside the cavity are 1.1 dB, which corresponds
to a cavity finesse of 20. The cavity is pumped by a very
narrow bandwidth distributed feedback (DFB) laser
(1 kHz) amplified by an erbium-doped fiber amplifier.
The experiment is performed as follows: The laser is
amplified up to 202 mW, and the output power of the
cavity is set to 70 mW. The total group velocity dispersion
is then modified in two ways: (i) A coarse tuning is
performed by removing SMF sections, and (ii) a fine-
tuning is achieved by changing the wavelength of the
pump, which is tunable over a 1-nm stretch around
1550.5 nm. We started with a SMF section of 6 m and
cut back small samples of fiber corresponding to a total
length of 5 m. This allows us to tune the second-order

dispersion (SOD) from �1 to �0:1 ps2=km. For each
measurement, the output spectra have been averaged over
100 OSA sweeps in order to get clean traces.
As an example, four typical spectra are presented in

Fig. 2. The mean group velocity dispersion in the top of
the figure were retrieved from the relation giving the value
of the most unstable frequency [17], which also corre-
sponds to the repetition rate of the generated pulse train.
Note that, as expected from standard theory, the shift of the
most unstable frequency increases as j�2j (i.e., the SOD)
decreases. Let us now focus on the asymmetry between
the blue- and redshifted generated frequencies. The ratio
between the fundamental frequencies is very low com-
pared to the one observed for the second harmonics.
For instance, more than 25 dB is observed in Fig. 2(b)
for the second harmonic while there is only 1 dB for the
first one. The SOD dependence of the ratios, R1h and R2h,
is represented in blue dots in Figs. 3(a) and 3(b),
respectively.
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FIG. 2 (color online). Examples of experimental spectra for
different values of the total group velocity dispersions. Each
spectrum is averaged over 100 shots. From (a) to (d), the SOD
decreases. R1h remains close to 1 (i.e., 0 dB), while R2h varies
strongly.
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FIG. 1 (color online). Experimental setup: BPF denotes band-
pass filter, EDFA denotes erbium-doped fiber amplifier, OSA
denotes optical spectrum analyser.
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FIG. 3 (color online). Theoretical (black line), numerical
(green crosses), and experimental (blue dots) evolution of
the asymmetry of the first and second harmonics with the
SOD as a function of either the repetition rate (bottom x axis)
or of the SOD (top x axis). Parameters: �3 ¼ 1:2�40 s3=m,
� ¼ 0:08 ð� ¼ 0:5Þ, � ¼ 0:16, L ¼ 105 m, and Pin ¼ jEinj2 ¼
202 mW.
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While we do not see a pattern emerging for the first
harmonic asymmetry when working so close to the
threshold, the curve depicting the asymmetry for the
second harmonics clearly exhibits a huge resonance of
nearly 30 dB around �2 ¼ �0:29 ps2=km [Fig. 3(b)].
This remarkable spectral asymmetry of the modulated
structures stems from the broken reflection symmetry
induced by the third-order dispersion. Its occurrences in
the spectrum have been experimentally observed in
conservative [19] as well as dissipative [16,18] systems,
and a full theoretical description of this behavior is a
long standing issue. Indeed, this asymmetry cannot be
described within the standard linear stability analysis.
In order to explain and better understand this nonlinear
behavior, a more complex analysis based on order pa-
rameter description is necessary to account for the impact
of higher-order harmonics on the dynamics of the system
above threshold [22]. The system under investigation
depicted in Fig. 1 can be modeled by the extended non-
linear Schrödinger equation with boundary conditions.
This leads to a set of two equations, usually referred to as
the map equations (or mapping), that can be combined
together by following the Lugiato-Lefever assumptions
to obtain a single equation that models the dynamics of
the cavity. This equation, known as the Lugiato-Lefever
equation [17], has proven relevant for describing weakly
nonlinear dynamics in cavities [23]. It reads

@c ðt0; �0Þ
@t0

¼
�
�1þ i½jc ðt0; �0Þj2 � ��

� i�2

@2

@�02
þ B3

@3

@�03

�
c ðt0; �0Þ þ S; (1)

where t0¼�t=tR, with t the real time and tR the round trip

time, �0¼�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�=L

p
, c ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�L=�

p
, S¼Ein

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L�=�3

p
,

B3¼�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=9L

p
, and � ¼ �=�, with the following

physical parameters, � the linear losses of the cavity, �
the transmission coefficient of the cavity, � the nonlinear
coefficient of the fiber, L the cavity length, �2 the
SOD, �3 the TOD, � the cavity phase detuning, E the
intracavity electric field, and Ein the electric pump field.
Both convective and absolute instabilities have been
recently reported for the steady-state solution Es of the
stationary form of (1): S ¼ ½1þ ið�� IsÞ�Es, where
Is ¼ jEsj2 [16]. Note that, in the case of a cw pump,
there is no appreciate difference between absolute
and convective regions for the accessible experimental
values of the parameters. Here, we devote our attention
to the case �< 41=30 and �2 < 0, for which fiber cav-
ities exhibit a supercritical bifurcation at Is ¼ 1 [17].
This is the threshold at which stationary homogeneous
solutions become unstable. Under such conditions, the
system evolves toward modulated solutions charac-

terized by a frequency �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� 2Þ=�2

p
and a wave

vector �c ¼ �B3�
3
c. Limited to five spectral modes,

these solutions read

c sðt; �Þ ¼ Dþ Aþeið�c�þ�ctÞ þ A�e�ið�c�þ�ctÞ

þ Cþe2ið�c�þ�ctÞ þ C�e�2ið�c�þ�ctÞ: (2)

Within our model, the nonlinear symmetry breaking
corresponds to Aþ � A� and Cþ � C� or, equivalently,
to R1h ¼ jA�j2=jAþj2 � 1 and R2h ¼ jC�j2=jCþj2 � 1.
The coefficients R1h and R2h characterize, respectively,
the asymmetry of the first and the second harmonics.
In order to find analytical expressions for R1h and R2h

and explain our experimental observations, we perform
a multiscale analysis similar to the one developed in
Ref. [9]. First, we expand the variables in the small
parameter ", defined as "2 ¼ Is � 1, that is the distance
from the instability threshold. The envelope of the
electric field is rewritten in terms of the amplitudes
ak, defined by E ¼ Es þ "a1 þ "2a2 þ "3a3 þ � � � .
Following the approach of Ref. [22] and taking
into account the gain spectrum of the instability [23],
we introduce the new times: T0 ¼ t, T1 ¼ "t, T2 ¼ "2t,
�0 ¼ �, and �1 ¼ "� so that the corresponding temp-
oral derivatives become @t¼@T0

þ"@T1
þ"2@T2

and

@�¼@�0 þ"@�1 . We then assume that the amplitudes ak
are the sum of quasimonochromatic waves written

in the form a1¼KðA1e
ið�c�0þ�cT0Þ þA�

1e
�ið�c�0þ�cT0ÞÞ,

and ak ¼ Dk þ Aþ
k e

ið�c�0þ�cT0Þ þ A�
k e

�ið�c�0þ�cT0Þ þ
Cþ
k e

2ið�c�0þ�cT0Þ þ C�
k e

�2ið�c�0þ�cT0Þ, with k ¼ 2, 3. The
form of a1 is justified by the fact that, right above
the instability threshold, the gain is only positive
in the vicinity of � � ��c, while, for the second- and
third-order corrections, contributions at 0 and �2�c

appear because of the nonlinear interactions. By substi-
tution of the above expansions in Eq. (1), we obtain a
hierarchy of equations for the successive orders of ".
Solving the system up to the third order, we obtain
analytical expressions of the asymmetries for the first
and second harmonics [24]. They read

R1h ¼ jA�j2
jAþj2 ¼ 1þH

4M

ð1�MHÞ2 þ N2
; (3)

R2h ¼ jC�j2
jCþj2 ¼ 1�H

12� 20G

2� 6ðG�HÞ þ 5ðG�HÞ2 ; (4)

with

M ¼ 1� Is

d1

12� 20G

ðG2 �H2Þ2 þ 4H2
; (5)

N ¼ Is� 1þ 1� Is

d1

�
3þ 12

7Gþ 9

G2

þ ð6� 10GÞðG2 �H2Þ
ðG2 �H2Þ2 þ 4H2

�
; (6)

d1 ¼ 24
2Gþ 3

G2
þ 4

G2ð1� 2GÞ þH2ð2G� 3Þ
ðG2 �H2Þ2 þ 4H2

; (7)

G ¼ 3ð�� 2Þ; (8)
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H ¼ 6�c ¼ �6B3�
3
c: (9)

Let us emphasize the role of the dimensionless H

parameter, proportional to the ratio �3=�
3=2
2 . We can see

from Eqs. (3) and (4) that the asymmetry on both harmon-
ics cancel as expected when H ¼ 0, i.e., when �3 ¼ 0.
The theoretical dependence of both R1h and R2h on �2 are
presented in Fig. 3 and compared with our experimental
results.

On this figure, we first see that the theoretical asymme-
try R1h [Fig. 3(a)] is very weak, which explains the diffi-
culty to observe it in experiments. Second, we observe a
very good agreement between the analytical model and the
experimental results for the asymmetry R2h. In particular,
the position of the resonance is very well reproduced by
our theoretical analysis. The difference in the strength
of the asymmetry of the first and second harmonics can
be understood from the different steps of the multiscale
analysis. The first order of the calculation is equivalent to
the linear stability analysis, generating two sidebands at the
frequency of maximum gain �c. Their amplitudes are the
same as they are both on resonance. On the second order,
nonlinear wave mixing of those waves and the pump gen-
erates the second harmonic sidebands. The different reso-
nating conditions induced by the TOD lead to different
amplitudes for the Stokes (long wavelength side) and
anti-Stokes wave (short wavelength side). Finally, at the
third order, the nonlinear mixing of the asymmetric second
harmonic waves with the pump lead to a small asymmetric
correction on the first harmonic. This shows that both the
first and second harmonic asymmetries come from the
resonating conditions of the second harmonic.

The comparison of our analytical and experimental
results shows a big discrepancy for group velocity disper-
sions lower than �0:2 ps2=km. We attribute this to the
limited validity of the mean-field equation (1). Indeed, in
the frame of the mean-field model, the system is described
by a single Lorentzian peak. This requires that all contri-
butions to the accumulated phase per round trip must
be much smaller than the free spectral range. But, for
SODs lower than �0:2 ps2=km, the TOD contribution to
the accumulated phase of the second harmonics becomes
of the same order of magnitude as the free spectral range.
As these sidebands reach the nearest resonance, their
behavior is not described correctly by the mean-field
model anymore.

The redshifted second harmonic is the first to reach the
nearest resonance, while the corresponding blueshifted
component is in between resonances. This induces a
reversal of the asymmetry that cannot be seen within the
mean-field model. In order to confirm this phenomenon,
we compared our results to numerical simulations per-
formed on the map equations. These simulations have
been performed with a slightly higher pump power
(230 mW) that corresponds to the threshold in numerical
simulations. Note that output spectra have been denoised

by using Savitzky-Golay smoothing filters. They confirm
our explanations and show clear secondary resonances for
the second harmonics, as can be seen in Fig. 3(b) (green
crosses).
Unfortunately, we were experimentally limited to SOD

lower than �0:1 ps2=km and couldn’t observe the second-
ary resonances as (i) the stabilization of our device
becomes very hard to achieve and (ii) the power of the
second harmonics becomes too low to be measured.
In summary, we studied analytically, numerically and

experimentally the TOD induced nonlinear symmetry
breaking of the modulation instability process in optical
fiber resonators. We give new insight on the physical origin
of the asymmetry on both the first and second harmonics in
the vicinity of the threshold. Our analytical predictions are
in excellent agreement with the experimental findings
except for low group velocity dispersion where we show
that the mean-field approximation is no longer valid. This
unexpected difference between the analytical and experi-
mental results is well described by numerical solutions
obtained by integrating the original full mapping model
of the cavity instead of the reduced Lugiato-Lefever equa-
tion. It is worth noting that the Lugiato-Lefever equation
(1), which is a particular realization of a forced complex
Ginzburg-Landau equation [25], models a broad area of
physical systems ranging from long Josephson junctions to
rf-driven plasma [26]. Our work can then contribute to a
further understanding of nonlinear symmetry breaking in
these fields and may shed light on experimental results
of dissipative structures displaying strong asymmetries
(see, e.g., Refs. [13,27]).
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