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We demonstrate that the quantum-mechanical description of Rutherford scattering has a photonic

counterpart in a new form of single particle photothermal microscopy. Using a split detector we

provide experimental evidence that photons are deflected by a photothermal potential that is created by

a local refractive index change around a heated nanoparticle. The deflection experienced is shown to be

the analog to the deflection of a massive particle wave packet in unscreened spinless Coulomb

scattering. The experimentally found focal detection geometry reveals a lateral split feature which

will allow new correlation-based velocimetry experiments of absorbing particles with ultrahigh

sensitivity.
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Rutherford scattering, which is the scattering of � par-
ticles on atoms, has changed our picture of the structure
of matter fundamentally. It has revealed that almost all of
the mass of an atom is confined in a positively charged
nucleus, which is 4 orders of magnitude smaller than the
size of an atom. The physical problem that has been
analyzed by Rutherford [1] is in a classical nonrelativistic
picture the deflection of positively charged � particles
by the positively charged nucleus of the scattering atom.
His well-known description explained the experiments by
Geiger and Mardsen [2] recording also backscattering
events, meaning particles are even reflected by the scatter-
ing atom. This classical particle picture has been extended
to a quantum-mechanical description since then [3], where
the � particle is treated as a matter wave interacting with
the nucleus of the scattering atom via Coulomb interac-
tions. Here, we demonstrate that this quantum-mechanical
Rutherford scattering owns an optical analog where pho-
tons are deflected by the interaction with a photothermal
(PT) potential, which is the local dielectric function per-
turbation exploited in photothermal microscopy on single
nano-objects, a vastly growing type of microscopy [4]. An
experimental extension of PT detection using a quadrant
photodiode detector directly reveals the deflection of light
by the PT potential and creates a split focus geometry,
which will find new application in the measurement of
flows by (cross-)correlation spectroscopy [5–8].

The quantum-mechanical treatment of Rutherford scat-
tering [3,9] is described by the stationary Schrödinger
equation

r2�k
CðrÞ þ k2

�
1� 2�

kr

�
�k

CðrÞ ¼ 0; (1)

where the wave vector k of the incident particle wave
is defined through the de Broglie relation @k ¼ mv0 and
� ¼ Ck=2E quantifies the interaction strength for a given
positive total energy E and Coulomb force constant C.
A positive value of � > 0 corresponds to a repulsive, and

a negative � < 0 to an attractive potential. A solution of the
wave equation is a plane wave that is distorted by the
interaction with the scattering potential,

�k
CðrÞ ¼ e�ð�=2Þ�eik�r�ð1þ i�Þ1F1ð�i�; 1; iðkr� k � rÞÞ:

(2)

While Eq. (1) has been formulated to describe particle
scattering with fixed mass, kinetic energy, and incidence
direction along k [10], it is mathematically a scalar wave
equation. Thus, it is in general valid for types of waves
other than matter waves as well. Under specific circum-
stances, a correspondence to the propagation of light in an
inhomogeneous medium may be found. A direct mapping
can be formulated and applied to PT single particle mi-
croscopy [11–13]. This type of microscopy has recently
been developed to image and characterize single absorbing
nonfluorescent molecules and nanoparticles [4,14,15].
Using a heating laser to optically excite an almost pointlike
absorber, the heat released generates a local temperature
rise, which decays with the inverse distance r�1 from the
particle. As a consequence of this local temperature rise,
the refractive index n0 of the surrounding material is
changed as well according to nðrÞ ¼ n0 þ�nR=r with
the contrast �n ¼ �Tdn=dT given by the thermorefrac-
tive coefficient dn=dT and the induced particle tempera-
ture rise �T. This delivers the photothermal potential,
which is scattering a second focused probe laser beam
that is not absorbed by the particle. To describe the inter-
action of this probe laser beam with the refractive index
profile, one needs to solve the Helmholtz equation (HE) for
weak perturbations [16]

r2UðrÞ þ k2½nðrÞ=n0�2UðrÞ ¼ 0; (3)

wherein U corresponds to the scalar electric field. As the
thermorefractive coefficient dn=dT is typically on the
order of Oð�10�4 K�1Þ and thus j�n=n0j � 1 we can
approximate ½nðrÞ=n0�2 by 1þ 2r�1�nR=n0 and obtain a
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scalar HE [Eq. (4)], which is mathematically completely
equivalent to the stationary Schrödinger equation (1)

r2Uk
CðrÞ þ k2

�
1þ 2�nR

n0r

�
Uk

CðrÞ ¼ 0: (4)

This immediately implies that the distorted plane-wave
solution in Eq. (2) is also the solution of the HE (4),
substituting � ! �k�nR=n0. Thus, the overall light scat-
tering problem employed in PT single particle microscopy
is the optical analog of Rutherford scattering (attractive or
repulsive).

Nevertheless, neither in PT detection nor in Rutherford
scattering does the solution presented in Eq. (2) directly
correspond to the actual signal measured. In both cases, the
incident particles or photons do not occupy a plane-wave
mode [10]. PT detection, for example, uses a focused
Gaussian beam. To demonstrate the equivalence of both
Rutherford and PT single particle detection, we model a
focused beam at r0 as a wave packet, with similar proper-
ties as a TEM00-mode Gaussian beam, by a plane-wave
superposition

Uwp
0 ðrÞ ¼

Z
dkAðkÞeik�ðr�r0Þ; (5)

with an azimuthally symmetric monochromatic wave-
vector spectrum Að#Þ¼�ð �k�kÞexpð�#2=2�2

#Þ in spheri-
cal coordinates. Such a wave packet has a characteristic
width scale given by !# ¼ 2=½k�#� [17,18].

The deflected or diffracted probing beam is given by the
superposition [10] of the plane-wave solutions Eq. (2):

U
wp
C ðrÞ ¼

Z
dkAðkÞe�ik�r0Uk

CðrÞ: (6)

Using Eq. (6) one may reproduce the familiar classical
limit of geometrical Rutherford scattering, which is
obtained when considering the parametric ray solution to
Fermat’s least optical path principle d2r=ds2 ¼ r 1

2n
2ðrÞ

with the stepping parameter s determined by jdr=dsj ¼
nðrÞ [19]. This classical limit results in hyperbolic ray
trajectories rð�Þ [13] given by

1=rð�Þ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2�2þ1
q

cosð���0Þ�1

��1
�
½j�jb2� (7)

in polar coordinates. Here, the appropriate sign �1 ¼
��=j�j is determined by sign of the interaction strength
in � ¼ k=�, which appears here in a wavelength indepen-
dent combination. The ray trajectory has its closest
approach to the scattering center at an angle �0 ¼ �=2þ
arctanð1=b�Þ when the ray is incident with the impact
parameter b. The familiar Rutherford trajectories for
massive and charged particles, that is, the solution to
Newton’s equation of motion md2r=dt2 ¼ �rCr�1 for
given total energy E, are entailed in Eq. (7) by the sub-
stitution � ! 2E=C. An interesting difference, however, is
that in the optical case no backscattering will occur,

because the ratio of the wavelength to the geometric closest
approach distance, �=2��1, is typically large, meaning that
the wave will be diffracted by the central particle of radius
R before backscattering by the PT potential can occur.
To obtain this classical limit equation (7) from Eqs. (6)

and (5) one should choose a beam of a finite width !# and
small angular spread (i.e., paraxial) with a lateral offset jr0j
larger than its width scale. Such a stretched wave packet
does not describe the wave packet’s temporal trajectory as
we consider a stationary solution only. However, an exten-
sion to pulses and matter wave packet dynamics is readily
obtained by the inclusion of the factor expð�i!ktÞ in the
integrand of Eq. (6) with !k ¼ ck for light pulses [17] or
!k ¼ @k2=2m for matter wave packets [10] assuming
some frequency dispersion. Without such a dispersion,
Eq. (6) reflects the time averaged probability to find parti-
cles or photons at a spatial position. The beam will expe-
rience a deflection by the scattering angle 	 ¼ 2�0 � �,
which fulfills the well-known relation cotð	=2Þ ¼ b� [1].
Figure 1(a) displays such a narrow and small wavelength
Gaussian wave packet, which is offset by b � jr0j from
the optical axis. The shape of the wave packet clearly
follows the classical limit indicated by the white line
demonstrating the equivalence to the classical Rutherford

(a)

(b)

FIG. 1 (color online). (a) Deflection of a narrow Gaussian
wave packet jUwp

C j2, Eq. (6), on a PT potential.

The following parameters have been used for the calculation:
� ¼ 17:1, �k ¼ 289 
m�1, r0 ¼ 0:5 
mx̂, �# ¼ 3�, !# ¼
0:13 
m. The white line corresponds to the classical
Rutherford trajectory rð�Þ, Eq. (7). The dashed contour lines
show the initial beam amplitude jUwp

0 j2, Eq. (5). (b) Off

axis diffraction or deflection of a wide Gaussian wave packet
jUwp

0 j2 (image, dashed contours) on a PT potential. The solid

contour lines show the diffracted beams jUwp
C j2 for varying

interaction strengths � ¼ f0:0214; 0:0855; 0:171g (red, green,
blue). Parameters: n0 ¼ 1:46, dn=dT ¼ �3:6	 10�4 K�1,
�T¼f200;800;1600Kg, � ¼ 635 nm, offset r0 ¼ 0:150 
mx̂,
�# ¼ 27:7�, !# ¼ 0:286 
m. The corresponding Rutherford
trajectories are displayed in the appropriate color and have
deflection angles 	 � f1:13�; 4:5�; 9:02�g.
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scattering solution. This is the expected � ! 0 classical
limit of the wave-scattering description of light [20].

The experimental conditions in PT single particle mi-
croscopy, however, do not correspond to this limit. The
beamwidth is in general larger than the characteristic lat-
eral offset jr0j of the probe beam. Therefore, without
having a well-defined impact parameter, the Rutherford
analogy becomes less apparent. Nevertheless, this situation
is still covered by Eq. (6) inserting the appropriate wave
packet and comprises the general features of a deflection of
the incident wave packet. To demonstrate this we detect the
deflection of the incident probe light on the PT potential by
measuring the change (�) induced by the heating laser in
the difference (�) signals of a quadrant photodiode detect-
ing transmitted powers Pd,

�i
RF ¼ �ð�iPdÞ ¼ �iPdðhotÞ � �iPdðcoldÞ: (8)

The difference �i may be either between the left and right or
top and bottom quadrants, i ¼ fx; yg, respectively. This is in
fact an extension of the thin sample slab transverse PT
deflection spectroscopy [21] or mirage technique [22] in
which amacroscopic layered refractive index field is probed.
Here, however, the geometrical optics limits of Maxwell’s

equations cannot be used. The change � is most conven-
iently measured with the help of a lock-in amplifier that
demodulates the respective probe-beam signals on the fre-
quency of the heating beam intensity modulation. We
demodulate either the sum signal of a quadrant photodiode
to obtain the PT signal [11–13],� ¼ �Pd, or the difference
channels to get the the heat-induced Rutherford deflection
signals, �i

RF, corresponding to Eq. (8).
Accordingly, the experimentally found focal detection

volumes of the PT signal� show an axially split detection
volume [11–13], see Figs. 2(a) and 2(d), while the PT
Rutherford scattering signals �x

RF and �y
RF have a lateral

splitting, signifying the experienced deflection, see
Figs. 2(b), 2(c), and 2(e). The xz and yz plane scans for
the PT�y-channel signal are exemplarily shown in Fig. 2(e)

for our diffraction limited focused probe and heating
beams. Evidently, the spatial heating beam intensity distri-
bution IhðrÞ also limits the spatial extent of the PT detection
functions as it sets the interaction potential strength by
� / Ih [18]. The heating beam position relative to the
probing beam determines which interaction is enhanced
and thus determines the asymmetry of the spatial signal
shape [11–13]. However, the type and working principle of
interaction itself is only determined by the probe beam

(a) (b) (c)

(d) (e)

FIG. 2 (color online). PT images of a R ¼ 30 nm AuNP in a scanning sample PT transmission microscope setup [18].
Heating (� ¼ 532 nm) and probe beam (� ¼ 635 nm) are focused with a NAill ¼ 1:4 oil immersion objective and collected
with NAd ¼ 0:8 dry objective. Embedding polymer was PDMS. (a), (b), (c) Experimental xy scans of the PT sum � and
the PT Rutherford scattering microscopy detection volumes �x

RF and �y
RF. The fit parameters are !y ¼ 207 nm,

�y ¼ �40 nm, !x ¼ 225 nm, �x ¼ 28 nm. (d, e) zx and zy scans of � and �y
RF. The focus is only split in one lateral direction

(here zy). In the perpendicular lateral direction (zx) it is the product of a lateral and axial Gaussian, see Eq. (9). Fit parameters as above
and !z ¼ 1:54 
m, �z ¼ 150 nm.
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interacting with the PT potential. The following empirical
fit-functions describe this novel focal detection geometry:

�ðiÞ
ðRFÞ ¼ �i

0½i� i0 � �i� Y
j¼x;y;z

exp

�
� 2½j� j0�2

!2
j

�
; (9)

with i ¼ x for the quadrant-diode x-difference signal �x
RF,

i ¼ y for the y-difference signal�y
RF and i ¼ z for the sum

signal�. The fit parameters f�x;�y;�zg take into account
the actual heating to probe beam offset in the corresponding
spatial directions. The fits according to Eq. (9) are shown as
contours in Fig. 2.

Although a systematic quantification shall not be within
the scope of this Letter, already the amplitude / � of the
normalized differences in these near-field diffraction cal-
culations corresponds to the range of experimentally deter-
mined far-field relative PT signals [18]. The PT sum signal
is best understood by looking at the diffraction pattern
when the beam probes the refractive index profile on
axis, see Fig. 3(a). An angular cone corresponding to the
beam’s spreading angle (lines) divides the spatial regions
of positive and negative difference between the unper-
turbed jUwp

0 j and the diffracted beam jUwp
C j. The PT sum

signal � corresponds to the interference zone that remains
undetected in classical Rutherford scattering experiments

where its angular extent, 	i ¼
ffiffiffiffi
�
kr

p
, due to plane-wave—

like incidence, vanishes at large distances [10]. Outside of
this interference domain, the differential Rutherford

cross-section d�
d� ¼ �2

4k2
sin�4ð	=2Þ is in contrast quadratic

in the perturbation. For focused-wave diffraction, the an-
gular spread of the plane-wave spectrum representing the
probe beam broadens up the interference zone and
describes the intensity (re)distribution detected in this
scheme. The result is a focal volume split in an axial
direction as seen in Fig. 2(d).
A probe beam with a finite displacement in a lateral

direction will experience a deflection as seen in Fig. 1(b).
The resulting relative PT deflection signal distribution, as
shown in Fig. 3(b), is such that the difference between the
initial probing beam and the diffracted beam shows posi-
tive and negative values on two sides of a dividing line
approximately determined the symmetry axis of the initial
beam. In an experiment, the use of a quadrant photodiode
provides a PT signal that is only sensitive to exactly this
deflection of the focused beam. While still present, the
widening or collimation of the beam responsible for the
ordinary PT signal will thereby not contribute. All PT
signal recording schemes, whether the sum or difference
signals are considered, are thereby special cases of the
optical scalar wave counterpart to Rutherford scattering
in its quantum-mechanical description. The wave-packet
scattering hereby described is quantitatively fully consis-
tent with the recent analytical on axis only analysis in
terms of Fresnel-Kirchhoff diffraction [12,18].
We have experimentally demonstrated and theoretically

explained a nanoscopic deflection-microscopy technique
that provides a sharply split focus having two distinct lobes
differing in sign of their respective PT signal. The signal
generating mechanism in this novel detection scheme was
shown to be the PT counterpart to quantum-mechanical
Rutherford scattering of wave packets. The splitting may
be achieved simultaneously in all three spatial directions
by using and the difference channels �x;yPd in x and y of a

quadrant photodiode in a PT transmission microscopy
setup and allows the distinction of particle positions
occupying any of the eight octants relative to the focus
of the probe beam. The possible applications range
from 3D velocimetry in microstructured flow channels
(via cross-correlation functions akin to Ref. [8]) to feed-
back controlled PT particle tracking. The achieved refram-
ing of a generalized PT signal further opens the path to
future inquiries on the nanoscopic temperature distribution
around heated nanoparticles through the powerful toolbox
of potential scattering in quantum mechanics.
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FIG. 3 (color online). Relative PT signal spatial distributions
½jUwp

0 j2 � jUwp
C j2�=jUwp

0 j2 for axially and laterally offset probe

beams calculated for an incident Gaussian wave packet
(see text). (a) negative axial offset r0 ¼ �0:450 
mẑ. A posi-
tive axial offset reverses the sign of the pattern [18]. (b) lateral
offset probe beam as depicted in Fig. 1(b). Parameters and
contour colors as in Fig. 1(b). Images and color scale correspond
to � ¼ 0:171.
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