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The time evolution of some quantum states can be slowed down or even stopped under frequent

measurements. This is the usual quantum Zeno effect. Here, we report an operator quantum Zeno effect, in

which the evolution of some physical observables is slowed down through measurements even though the

quantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we

can protect quantum information from decoherence with two-qubit measurements, realizable with noisy

two-qubit interactions.
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Introduction.—The quantum Zeno effect (QZE) predicts
that frequent measurements can freeze the time evolution
of a quantum state [1–4]. Strictly speaking, the state need
not be frozen in a single state, it could just be frozen within
a multidimensional subspace, the Zeno subspace [5,6]. In a
typical QZE, a set of observables commuting with each
other are measured, and the state could evolve within the
Zeno subspace in the presence of a Hamiltonian. In this
Letter, we consider a different scenario for a quantum
Zeno-like effect, where the observables need not be com-
mutative. In this case, the state may change with time as a
result of the measurements. In contrast to the usual QZE,
we find that even though the state is not frozen in time,
certain physical quantities can be frozen through frequent
measurements. We coin this effect as operator quantum
Zeno effect (OQZE).

Protecting quantum states from decoherence is crucial
for practical quantum information processing. A number of
methods have been proposed for decoherence protection,
including passive methods, e.g., decoherence-free sub-
space [7–9], and active methods, e.g., quantum error cor-
rection code (QECC) [10–12] and dynamical decoupling
[13–15]. In the case of the two active methods, accurate
quantum operations are required. The QZE is also pro-
posed for dealing with decoherence by frequently measur-
ing stabilizers of QECCs [16,17]. Recently, it has been
shown that QZE-based schemes can help suppress deco-
herence while allowing for full quantum control [18].
Compared with QECC and dynamical decoupling, QZE-
based schemes tolerate erroneous measurements, because
measurement outcomes are not read. However, in previous
QZE-based schemes, multiqubit measurements are
required due to the nonlocality of stabilizers, which means
one either needs multiqubit interactions or simulating

multiqubit measurements with quantum circuits composed
of single- and two-qubit quantum gates.
In this Letter, we show a new protocol of suppressing

decoherence based on the OQZE. In our protocol,
measurements are noncommutative providing protection
with only single- and two-qubit measurements. The mea-
surements cause the state to evolve randomly even though
the encoded logical states do not, provided the frequency of
measurements is sufficiently high. Since the measurement
outcomes are not read, the operations of the measurements
can be realized with noisy two-qubit interactions.
Operator quantum Zeno effect.—Consider a set of mea-

surements fP ðkÞg containing K independent measurements,
where k ¼ 1; 2; . . . ; K. Here, a measurement superoperator

P ðkÞ� ¼ P
qM

ðkÞ
q �MðkÞy

q , and fMðkÞ
q g satisfies the sum

rule
P

qM
ðkÞy
q MðkÞ

q ¼ 1. Each measurement is performed

instantly, and measurements are always sequentially done

and denoted as P ¼ P ðKÞ � � �P ð2ÞP ð1Þ. Suppose these
measurements are performed N times during the entire
time of evolution � at equal intervals. For a system whose
free evolution is governed by the Hamiltonian H, the

superoperator describing the time evolution is UðtÞ ¼
eLt, where the generator L� ¼ �i½H;��. The state of
the system at time � is then given by

�ð�Þ ¼ ½Uð�=NÞP �N�ð0Þ; (1)

where �ð0Þ is the initial state. On the other hand, the time
evolution of an operator A acting on the system is given by

Að�Þ ¼ ½P yUð��=NÞ�NA; (2)

so that Tr½Að�Þ�ð0Þ� ¼ Tr½A�ð�Þ� due to the cyclic prop-

erty of the trace. Here, P y ¼ P ð1ÞyP ð2Þy � � �P ðKÞy and
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P ðkÞy� ¼ P
jM

ðkÞy
j �MðkÞ

j . Note that while P is a POVM,

P y may not be one.
We now consider the case in which A commutes with all

measurements, i.e., ½A;MðkÞ
q � ¼ 0. Expanding time evolu-

tion operators, Að�Þ ¼ VAþOð1=NÞ, where
V ¼ fP y½1� ð�=NÞL�gN; (3)

and Tr½Oð1=NÞ�� vanishes in the limit N ! 1 for any
state � [19]; i.e., limN!1 kOð1=NÞ k¼0, if kAk and k H k
are both finite, where k�k denotes the trace norm of a
matrix. A sufficient condition of the operator Zeno effect
is that

P yLA ¼ �i½P yH;A� ¼ 0: (4)

Under this condition, the expansion of VA shows that
VA ¼ A [19]. Therefore, Að�Þ ¼ A in the limit N ! 1.

We would like to remark that the OQZE is different from
a Heisenberg-picture formulation of the QZE. The
Heisenberg picture and the Schrödinger picture are differ-
ent formulations of the same physical process. Under the
Schrödinger picture, the quantum state in a QZE is frozen
by frequent measurements. However, in the same picture,
the state changes randomly under the measurements in the
OQZE.

Time evolution of states.—Consider a sequence in which

fP ðkÞg are all projective measurements of observables

f�ðkÞg for each k, respectively. Clearly, P ðkÞ projects any
state to an eigenstate of �ðkÞ. So in this sequence, P ðkÞ

projects an eigenstate of �ðk�1Þ to an eigenstate of �ðkÞ. If
f�ðkÞg do not commute with each other, these observables
do not have common eigenstates, implying that the state
evolves under the measurements even if the Hamiltonian of
the system is switched off, i.e., H ¼ 0. We reiterate that if

f�ðkÞg commute with each other, the state can evolve in a
Zeno subspace due to a nonzero H. This effect is typically
known as the quantum Zeno dynamics [6]. However, it is
different from our OQZE.

In an OQZE, although the states may change, one can
still employ the effect to protect quantum information
without any feedback. This is because if the condition
Eq. (4) is satisfied by a set of operators fAg which defines
a tensor-product subsystem, the states of this tensor-
product subsystem can be frozen due to the Zeno effect.

Zeno quantum memory.—We encode m logical qubits
using n physical qubits. In our protocol, the encoding need
not be a QECC. For n qubits,� ¼ f1; X; Y; Zg�n is a subset
of the Pauli group. Elements of � are all Hermitian and
unitary, and any two elements of � either commute or
anticommute. Logical qubits are represented by logical
operators L ¼ f �Z;1 ; �Z2; . . . ; �Zm; �X1; �X2; . . . ; �Xmg, which is
a subset of �. Here, f �Zi; �Xig are Pauli operators of the ith
logical qubit. Logical operators satisfy ½ �Zi; �Zj� ¼
½ �Xi; �Xj� ¼ 0 for all i and j; ½ �Zi; �Xj� ¼ 0 for all i � j;

and f �Zi; �Xig ¼ 0 for all i. The group GðLÞ, generated
by L and overall factors f�1;�ig, is a Pauli group of
m qubits.
Decoherence is induced by the Hamiltonian H ¼ HS �

1B þ 1S �HB þHSB, where HS, HB, and HSB are
Hamiltonians of the system, the bath, and the interaction
between the system and the bath, respectively. The
Hamiltonian can be decomposed as H ¼ P

lalel, where
E ¼ felg is a subset of �, falg are real coefficients or
Hermitian operators of the bath, and a0 is the coefficient
of 1�n ¼ 1S. We assume that k al k are all finite and E \
GðLÞ ¼ f1�ng, otherwise logical qubits cannot be pro-
tected by our protocol. Here, the second condition is auto-
matically satisfied if H is a k-local Hamiltonian (only for
the system), and the locality of every element of GðLÞ is
higher than k, except 1�n.
To protect logical qubits, elements of a subset of�, C ¼

fckg, are measured sequentially. The measurement super-

operator corresponding to the element ck is P ðkÞ� ¼ PðkÞ
þ �

PðkÞ
þ þ PðkÞ� � PðkÞ� , where PðkÞ

� ¼ ð1�n þ �ckÞ=2. These
measurements satisfy the following conditions:
(i) elements of C all commute with elements of L;
(ii) GðCÞ \GðLÞ ¼ f1�ng, where GðCÞ is the group gen-
erated by C and overall factors f�1;�ig; and (iii) every
element of E, except 1�n, anticommutes with at least one
element of C. Conditions (i) and (ii) ensure that the mea-
surements do not read out or destroy any information in the
logical qubits, and that all elements of GðLÞ commute with

all PðkÞ
� . The condition (iii) results in P yH ¼ a01

�n [19];
i.e., the sufficient condition for the OQZE in Eq. (4) is
satisfied for all logical operators. As a result of the Zeno
effect, the evolution of logical operators can be frozen by
frequent measurements; i.e., the stored quantum informa-
tion is protected from decoherence.
Two-qubit measurements.—One-local noise occurs if

qubits are affected by the bath via two-local interactions.
We show that, if GðCÞ is an Abelian group, two-qubit
measurements are not enough to suppress general one-
local noise. For general one-local noise, E contains all
one-local elements of the system, i.e., H ¼ H1 þHothers,
where H1 ¼ P

n
i¼1ðai;XXi þ ai;YYi þ ai;ZZiÞ. To suppress

noise on the qubit i, elements of C must involve at least
two of fXi; Yi; Zig. Now, we suppose that c1 and c2 are two
elements that involve Xi and Yi, respectively. If c1 and c2
are both two-local, we write c1 ¼ Xi� and c2 ¼ Yis.
Because ½c1; c2� ¼ 0, we have f�; sg ¼ 0, which means
that � and s are operators of the same qubit and measure-
ments of c1 and c2 projects two qubits, the qubit i and the
qubit corresponding to� and s, into a maximally entangled
state. We see that, these commutative two-qubit measure-
ments project qubits into irrelevant maximally entangled
pairs; i.e., the encoding of quantum information is not
allowed. Hence, commutative-measurement based proto-
cols, or stabilizer-measurement based protocols, are not
consistent with two-qubit measurements.
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In our protocol, because GðCÞ can be non-Abelian, we
show that general one-local noise can be suppressed with
only single- and two-qubit measurements.

Three-qubit encoding—an example.—We consider three
qubits as shown in Fig. 1. Only one logical qubit is encoded
as �Z ¼ Z1Z2 and �X ¼ X2X3. The measurements include
C ¼ fZ1; Z2Z3; X3; X1X2g, in which Z1 and Z2Z3 (X3 and
X1X2) are measured simultaneously. Z2Z3 and X1X2 mea-
surements are both two-qubit parity projections. Initially,
the logical quantum state is encoded in the logical compu-
tational basis j ��;ini ¼ j0i1j�i2jx; 0i3, where � ¼ 0, 1.

Here, jx;�i3 ¼ ð1= ffiffiffi
2

p Þ½j0i3 þ ð�1Þ�j1i3� are eigenstates
of X3. During the process, the basis states used for encod-
ing can change randomly, depending on the outcomes
f�z; �zz; �x; �xxg of the measurements C respectively.
Here, �k ¼ 0, 1 are corresponding to eigenvalues 1, �1,
respectively. After measuring Z1 and Z2Z3, the basis
states are

j ��zi ¼ j�zi1j� � �zi2j� � �z � �zzi3: (5)

After measuring X3 and X1X2, the basis states are

j ��xi ¼ ð�1Þ�ð�xþ�xxÞj��;�xx
i1;2jx; �xi3; (6)

where the Bell states

j��;�xx
i1;2 ¼ 1

ffiffiffi
2

p ½j�i1j0i2 þ ð�1Þ�xx j1 ��i1j1i2�: (7)

Even basis states change randomly, one does not have to
record the measurement outcomes during the process. To
read out the logical qubit, Z1 and X3 are measured simul-
taneously, and only these two outcomes are recorded. The
logical operators are converted into single-qubit operators
as �Z ¼ ð�1Þ�zZ2 and �X ¼ ð�1Þ�xX2, and basis states

j ��outi¼ ð�1Þ��x j�zi1j���zi2jx;�xi3, which only depend
on the last two measurement outcomes.
The time evolution of quantum logical operators is

frozen by frequent measurements; i.e., their average values
do not change. Because quantum states of a qubit can
always be described with the expression � ¼ 1=2þ
hXiX þ hYiY þ hZiZ, where h�i denotes the average value
of � in the state �, we conclude that the logical state has not
evolved throughout the entire process. It is also shown in
Ref. [19] how the encoded quantum information is stabi-
lized by the measurements.
Pauli errors.—We quantitatively describe the perform-

ance of the Zeno quantum memory with error superoper-
ators. For any initial logical state �in, the output logical
state can always be written as �out ¼ E�in, where the error
superoperator E is independent of the initial logical state.
In our three-qubit example, we find that E� ¼ F � þ
pXX � X þ pYY � Y þ pZZ � Z if noise is isotropic.
Here, F ¼ 1� pX � pY � pZ is the fidelity of the quan-
tum memory and p� is the probability of the Pauli error
½��, where � ¼ X, Y, Z. In Fig. 2, we show error proba-
bilities changing with the storage time for varying mea-
surement frequencies. One can find that error probabilities
can be reduced by increasing measurement frequencies.
Decoherence time.—The Zeno quantum memory can be

combined with QECCs [10–12]. We propose to encode a
high-level logical qubit in many low-level logical qubits
stored in Zeno memories. Here, we take Kitaev’s surface
code as an example [20]. A surface code quantum memory
is robust against errors with a threshold of maxfpX þ
pY; pZ þ pYg< 0:104, if quantum gates are perfect. The
threshold of fault-tolerant quantum computing based on
the surface code is �1% [21,22]. A gate error rate 1 or 2
orders of magnitude below the fault-tolerant quantum

FIG. 1 (color online). The scheme of protecting one logical
qubit encoded in three qubits from noise. The quantum state
jc ini is encoded into three qubits by initializing the other two
qubits in states j0i and jx; 0i, respectively. Here, jx; �i is an
eigenstate of X with eigenvalue ð�1Þ�. To protect the logical
state for time �, N sets of measurements are performed with the
frequency f ¼ N=�. Each set includes measurements of Z, ZZ,
X and XX on corresponding qubits. Here, we use M� to denote
the measurement of �. The logical qubit is decoded withMZ and
MX, whose outcomes are �Z and �X, respectively. Finally, a
single-qubit operation is performed in order to correct the Pauli
frame of the output state jc outi.
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FIG. 2. The probabilities of Pauli errors, pX, pY , and pZ (solid
line, dashed line, and dotted line, respectively). Here, we con-
sider one-local noise with parameters fai ¼ ðai;X; ai;Y ; ai;ZÞg,
which are uniformly distributed random vectors with k ai k	
a. The unit of time is a�1. One can find that pX and pZ are
coincident. By increasing the measurement frequency (from top
to bottom: without measurements, f ¼ 10, f ¼ 100 and f ¼
1000), one can reduce the probabilities of getting Pauli errors.
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computing threshold will not significantly change the
threshold of the quantum memory. With error probabilities
lower than this threshold, the fidelity of the surface-code
logical qubit is always higher by encoding with more low-
level qubits. Thus, we can define a lifetime of Zeno
quantum memories. If the storing time is shorter than the
lifetime, errors can be corrected by the surface code and
the fidelity of the high-level logical qubit can be arbitrarily
approaching unity with sufficient low-level logical qubits.
The lifetime is not the maximum time of storing high-level
logical qubit but the time before active error corrections
start. In Fig. 3, we show the lifetime of the three-qubit Zeno
quantum memory.

Noisy two-qubit interaction.—In our three-qubit Zeno
quantum memory protocol, because outcomes are not
recorded, parity projections can be realized with noisy
Ising interactions. The parity projection superoperator
can be rewritten as P��� ¼ ð1=2Þ � þð1=2Þ�� � ��,
where� ¼ X, Z. Therefore, the parity projection is equiva-
lent to randomly performing the identity operation or the
�� operation with the same probability 1=2. We describe
the time evolution driven by a noisy Ising interaction as
U��� ¼ R

dJpðJÞe�iJt�� � eiJt��, where pðJÞ is the

probability density of the coupling constant J. Here, we
choose a time t satisfying

R
dJpðJÞ sinðJtÞ cosðJtÞ ¼ 0 and

p�� ¼ R
dJpðJÞsin2ðJtÞ> 1=2. Then one can realize the

parity projection by randomly performing the noise evolu-
tion with the probability 1=ð2p��Þ.

Conclusion.—In this Letter, we investigated the theory
of the OQZE, in which states may evolve under frequent

measurements even though the time evolution of certain
operators can be frozen. We find a sufficient condition for
the OQZE, though we believe that this condition is not a
necessary condition and a more general condition may
exist. The OQZE can be used to protect quantum informa-
tion stored in logical qubits from decoherence. By taking
advantage of the OQZE, quantum information can be
protected with two-qubit measurements. We have only
considered projective measurements analytically, but our
numerical results show that our protocol also works with
weak measurements [18,23], as shown in Fig. 3. Two-qubit
measurements, and even many-qubit measurements can be
implemented (even fault tolerantly) using local operations
on the platform of quantum computers [18]. As shown in
this Letter, two-qubit measurements can also be simulated
with noisy Ising interactions. Though we only show that
the three-qubit encoding can protect the quantum informa-
tion from general one-qubit noise, we believe that multi-
qubit noise can be corrected by encoding each logical qubit
into more physical qubits. Finally, we note that we have not
considered the feasibility of using quantum control during
the protection of the logical qubits in our protocol, which
deserves future investigation.
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