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Device-independent protocols use nonlocality to certify that they are performing properly. This is

achieved via Bell experiments on entangled quantum systems, which are kept isolated from one another

during the measurements. However, with present-day technology, perfect isolation comes at the price of

experimental complexity and extremely low data rates. Here we argue that for device-independent random-

ness generation—and other device-independent protocols where the devices are in the same lab—we can

slightly relax the requirement of perfect isolation and still retain most of the advantages of the device-

independent approach, by allowing a little cross-talk between the devices. This opens up the possibility of

using existent experimental systems with high data rates, such as Josephson phase qubits on the same chip,

thereby bringing device-independent randomness generation much closer to practical application.

DOI: 10.1103/PhysRevLett.110.100504 PACS numbers: 03.67.Ac, 03.65.Ud, 03.67.Dd

Introduction.—The great advantage of device-
independent (DI) protocols is their reliance on a small set
of tests, which are nevertheless sufficient to certify that
they are performing properly. This is achieved by carrying
out nonlocality tests on entangled quantum systems. In
particular, no assumptions are made regarding the inner
workings of the devices (the Hilbert space dimension of the
underlying quantum systems, etc.) [1,2]. Each device is
treated as a ‘‘black box’’ with knobs and registers for
selecting and displaying (classical) inputs and outputs.
Applications include quantum key distribution [2–7],
coin flipping [8], state tomography [6,9,10], genuine multi-
partite entanglement detection [11], self-testing of quan-
tum computers [12,13], as well as DI randomness
generation (RG) [14–18].

It is often remarked that DI cryptographic protocols
remain secure even if the devices have been provided, or
sabotaged, by an adversary. This scenario, while concep-
tually fascinating, is of little (if any) practical relevance
because (i) there are so many types of attacks available to a
malicious provider—the majority being classical—that
eliminating them all is an enormous task, and (ii) in any
case we assume the existence of honest providers of, e.g.,
the source of randomness, the jamming technology to
prevent information leakage from the labs, or the classical
devices used to process the data. A scenario where one can
trust the providers of all of the above, but not the provider
of the quantum devices, is highly implausible.

The actual advantage of DI protocols is that they allow
us to monitor the performance of the devices irrespective of
noise, imperfections, lack of knowledge regarding their
inner workings, or limited control over them. Indeed,
even if the devices were obtained from a trusted provider
and thoroughly inspected, many things can still uninten-
tionally go wrong (as demonstrated by the attacks on
commercial quantum key-distribution systems [19–21],
which exploited unintentional design flaws).

This problem is particularly acute in the case of DI RG,
as it is very difficult even for honest parties to manufacture
reliable randomness generators (whether classical or quan-
tum) and monitor them for malfunction. The generation of
randomness in a DI manner solves many of the shortcom-
ings of customary RG protocols, because, as mentioned
above, the degree of violation of a Bell inequality provides
an accurate estimate of the amount of randomness gener-
ated irrespective of experimental imperfections and lack of
control. DI RG has so far been proven secure against
adversaries with classical side information about the de-
vices (which is the relevant case when the provider is
trusted) for arbitrary Bell inequalities and degrees of vio-
lation [16,17], and against adversaries with quantum side
information in the case of very high violations of the
Clauser-Horne-Shimony-Holt (CHSH) inequality [18].
Unfortunately, DI RG is experimentally highly challeng-

ing. It requires a Bell experiment with the detection loop-
hole closed and with the quantum systems isolated from
one another. A proof of principle experiment was reported
in Ref. [15] using two ions in separate vacuum traps, but
this system operates at an extremely low rate (�1 mHz),
precluding any practical application. Nevertheless, there
exist today experiments involving, for example, two
Josephson phase qubits on the same chip coupled by a
radio frequency resonator [22], or two ions in the same trap
coupled via their vibrational modes [23,24], which allow
for Bell violating experiments (with the detection loophole
closed) at much higher data rates (*1 kHz).
In these experiments the quantum systems are very close

to one another. This proximity provides the non-negligible
coupling required for high entanglement generation rates.
Adapting DI RG to these types of experiments would bring
it much closer to real-life application. The problem is that
precisely because the systems are close to one another and
non-negligibly coupled, they can no longer be considered
as completely isolated (see Refs. [25,26] for a discussion of
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the couplings involved). The aim of the present work is to
show how to take this coupling into account by relaxing
slightly the assumptions behind the DI approach, while
keeping as much as possible all of its advantages.

We begin by showing how to derive bounds on the RG
rate in a DI setting given a known amount of cross-talk
(CT) between the devices. Next, we present methods for
estimating the amount of CT present in an experiment. Our
approach is then illustrated on Josephson phase qubits,
showing that efficient DI RG is possible using already
established technology. We start, however, by recalling
briefly the essential ingredients of DI RG relevant to our
analysis. We refer to Refs. [15–17] for a more detailed
presentation.

Bell inequalities and device-independent randomness
generation.—A Bell experiment is characterized by the
probabilities P ¼ fPabjxyg of obtaining the outcomes (or

outputs) a and b given the measurement settings (or inputs)
x and y. A Bell expression IðP Þ ¼ P

abxycabxyPabjxy
is a linear function of these probabilities. For instance,
the CHSH inequality has the form IðP Þ ¼
P

a;b;x;y2f0;1gð�1Þa�b�xyPabjxy � 2. To any Bell expression,

one can associate a bound on the randomness of the outputs
given the inputs x and y through a function P�

xyðIÞ such that
max a;bPabjxy � P�

xyðIÞ holds for any P for which IðP Þ ¼
I [15–17]. The function P�

xyðIÞ should be monotonically

decreasing and concave in I (if not we can take its concave
hull). Higher values of P�

xyðIÞ imply less randomness, in

particular when min x;yP
�
xyðIÞ ¼ 1 the system is fully

deterministic.
Given knowledge of such a function and the degree of

Bell violation I observed in an experiment where the
devices are used n times in succession, one can infer a
lower bound on the min-entropy of the measurement out-
comes. By applying a randomness extractor to the resulting
string of outcomes, one then obtains a new private string of
random numbers of length ’ �nlog 2P

�
xyðIÞ, which is ar-

bitrarily close (up to a security parameter) to the uniform
distribution. Depending on the assumptions made regard-
ing the devices and the adversary, such a protocol may also
require an initial random seed (in which case one talks
about DI randomness expansion) that may be polynomially
[15] or exponentially [16,17] smaller than the output string.

Device-independent randomness generation with weak
cross-talk.—In the security analysis of DI RG protocols the
assumption that the two Bell violating devices are isolated
from one another only appears in the derivation of the
bound P�

xyðIÞ � max a;bPabjxy. If we introduce a similar

bound P�
xyðI; �Þ that is valid in the presence of a given

amount of CT � (defined below), then the rest of the
reasoning of Refs. [15–17] will apply without
modification.

To define such a CT-dependent bound, we write
the probabilities observed in a Bell experiment as
Pabjxy ¼ Trð��abjxyÞ, where � 2 H A �H B and

f�abjxyg is a positive operator valued measure (POVM)

on H A �H B (i.e., the �abjxy are positive semidefinite,

which we write as �abjxy � 0, and
P

ab�abjxy ¼ 1). The
novelty with respect to the standard mathematical descrip-
tion of Bell experiments is in allowing the measurement
�abjxy to act collectively on the two systems. We will say

that such a collective measurement requires no more than
� amount of CT if there exists a product POVM
f�ajx ��bjyg satisfying

� �1 	 �abjxy ��ajx ��bjy 	 �1; (1)

for all combinations of a and b. This condition restricts
how far each collective POVM may be from a product of
two independent POVMs. In particular, when � ¼ 0 the
�abjxy can be expressed as products, while when � ¼ 1

they are unconstrained.
Consider now a fixed value of � and a Bell violation I.

The solution of the following program provides the
minimal amount of randomness P�

xyðI; �Þ compatible

with I and �:

P�
xyðI; �Þ ¼ max

a;b
max
Q

Pabjxy (2)

such that

Pabjxy ¼ Trð��abjxyÞ; IðP Þ ¼ I;

��1 	 �abjxy ��ajx ��bjy 	 �1;

where the optimization runs over the set Q ¼
f�; f�ajxg; f�bjyg; f�abjxyg;H A;H Bg specifying the state,
measurements, and the Hilbert spaces. This formulation is
therefore DI in spirit because the bound is formulated
without fixing the dimension of the Hilbert spaces, nor
how the measurements are implemented, etc.
Upper bounds on the optimization problem Eq. (2) can

be obtained using the techniques of Refs. [27,28], which
relax the problem to a hierarchy of semidefinite programs.
In particular, the resulting series of bounds is guaranteed to
converge to the true solution. Nevertheless, depending on
the problem, even the lowest order relaxation may be
computationally intractable. We may then obtain a weaker
bound in terms of P�

xyðI; 0Þ—the solution in the absence of

CT. Let �0, f�0
ajxg, f�0

bjyg, and f�0
abjxyg be the state and

POVMs corresponding to the solution of Eq. (2), and let
P0
abjxy ¼ Trð�0�0

ajx ��0
bjyÞ and P 0 ¼ fP0

abjxyg. From the

last constraint in Eq. (2) we have that jPabjxy � P0
abjxyj �

�, and so IðP 0Þ � IðP Þ � �� where � ¼ P
a;b;x;yjcabxyj

(in the case of the CHSH inequality, for instance, � ¼ 16).
Taken together, the last two inequalities imply that

P�
xyðI; �Þ � P�

xyðI � ��; 0Þ þ �: (3)

Figure 1 displays upper bounds on P�
00 obtained from

Eqs. (2) and (3) in the case of the CHSH inequality.
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Finally, we note that the last constraint in Eq. (2) implies
that the signaling—the extent to which the output of one
device depends on the input of the other—is constrained.
Specifically, if to each input x and each input y correspond
N outputs, jPajxy � Pajxy0 j � 2N� for all a, x, y, y0, etc. (in
the case of zero signaling, one has Pajxy ¼ Pajxy0). This
allows us to derive a simpler bound on P�

xy, depending

solely on the amount of signaling present, in contrast to the
bounds Eqs. (2) and (3), which rely on the full structure of
quantum mechanics. To this end we define the maximal
amount of signaling allowed as

� ¼ max fmax
a;x;y;y0

jPajxy � Pajxy0 j; max
b;y;x;x0

jPbjxy � Pbjx0yjg: (4)

When � ¼ 0, P resides within the no-signaling polytope
[29], while when � > 0 P resides within a larger, higher-
dimensional polytope. The bound can be obtained by
solving the linear program P�

xyðI; �Þ ¼ max abPabjxy, given
that IðP Þ ¼ I, jPajxy � Pajxy0 j � �, and jPbjxy � Pbjx0yj �
�. In the case of the CHSH inequality, one can show that
(see Section A of the Supplemental Material [30])

P�
xyðI; �Þ � 3

2
� 1

4
I þ 2�: (5)

This bound applies to any postquantum theory that restricts
the amount of signaling (as well as to quantummechanics).

Estimating the amount of cross-talk.—We have just seen
how the introduction of a new security parameter �, quan-
tifying the amount of CT between the devices, allows us to
extend the scope of DI RG to settings with a limited
amount of CT. To apply this approach, we therefore need
a reliable prior estimate of � and a means of guaranteeing
or verifying that the CTwill not exceed this estimate during
latter operations of the devices. This obviously requires
some modeling of the devices’ inner workings. Indeed, it is
impossible to set an upper bound for the amount of CT
from first principles only or from any set of observed data

P alone, since communicating devices can deterministi-
cally reproduce any P , and therefore simulate any degree
of Bell violation.
At first, this may seem an unwelcome departure from the

purely DI approach (i.e., � ¼ 0). Nevertheless, our
approach has the advantage over fully device-dependent
approaches in that only a single parameter � must be
device-dependently estimated to ensure that the protocol
performs properly, and this same parameter is used irre-
spective of the underlying physical realization. Moreover,
even in purely DI protocols the absence of communication
cannot be deduced from the observed data alone, and to
verify that there is indeed no communication will neces-
sarily involve putting our trust in certain general assump-
tions regarding the behavior of the devices, or relying on
some trusted external hardware. Seen in this light, our
approach is not very different from the standard (DI) one,
except that instead of verifying in some trusted way that
� ¼ 0, we must verify that � is no greater than some finite
value. Finally, we note that our approach allows us as a
safeguard to set � to be greater than its expected value—a
feature that may be useful even in purely DI protocols with
(allegedly) noncommunicating devices.
Even though a maximal amount of CT � cannot be

guaranteed without some modeling of the devices, there
are several ways to set a lower bound for � from the
observed data P only. If the devices were not fabricated
by an adversary and do not act maliciously, then these
lower bounds may provide good estimates of �.
A simple way to set a lower bound for � in a DI manner

is via the degree of violation of the no-signaling conditions
Eq. (4), computed from the observed data P . From Eq. (4)
it follows that � � �=2N. Improved DI bounds are obtain-
able, however, reflecting the fact that � does not capture all
of the information contained in P . The minimal amount of
CT that is compatible with a given P is given by the
solution of the following optimization problem:

min
Q

� (6)

such that

Trð��abjxyÞ ¼ Pabjxy;

��1 	 �abjxy ��ajx ��bjy 	 �1;

which can be lower bounded using the techniques of
Refs. [27,28]. It is clear that this bound is optimal, since
the optimization runs over all possible states � and sets of
projectors f�ajxg, f�bjyg, and f�abjxyg satisfying the con-

straints in Eq. (6). That it constitutes an improvement over
the bound provided by Eq. (4) is seen by considering the
case of postquantum nonsignaling distributions (including
those that do not violate Tsirelson’s bound [31]). Such
distributions will not give rise to a nonvanishing bound
via Eq. (4). However, because they cannot be realized
quantumly without communication, they will give rise to
a nonvanishing bound via Eq. (6). See Fig. 2.
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FIG. 1 (color online). DI upper bounds on P�
00. The middle and

top curves give semidefinite programming based upper bounds
obtained from Eqs. (2) and (3), respectively, as a function of the
CHSH violation I, given � ¼ 0:01. The bottom curve bounds
P�
00 when � ¼ 0.
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It is possible of course that the true value of � is not
revealed by the above lower bounds (for instance, points in
QR in Fig. 2 can be reproduced either with or without
CT, and thus the real value of � cannot be unambiguously
determined from the observed data P alone). Nevertheless,
one can also adopt a more device-dependent approach to
estimating �. In particular, if the lower bound provided by
Eq. (6) equals zero, one can vary the state and the mea-
surements. Such a procedure could in principle reveal the
presence of any fixed interaction Hamiltonian H, since it
has been shown that for any such interaction there exists a
strategy involving only local operations and classical com-
munication that reveals the presence of the interaction as
signaling [32]. However, we do not know of any systematic
way for finding this strategy if H is unknown, nor do we
know how to relate in a systematic way the observed
signaling to H.

Finally, by modeling the physical systems, their interac-
tion and the measurement procedure, it is possible to
estimate the amount of CT. An example of this last
approach are given below.

Candidates for real-life implementation.—A system
ideally suited for the implemenation of DI RG will
(i) give rise to a sufficiently high Bell violation with the
detection loophole kept closed, (ii) exhibit a negligible
amount of CT, and (iii) allow for very high data rates.
We discuss below an experiment based on Josephson phase
qubits that meets all of these requirements. Another pos-
sibility is based on trapped ions, as discussed in Section B
of the Supplemental Material [30].

In the CHSH experiment of Ref. [22] two Josephson
phase qubits, coupled by a radio frequency strip resonator,
are used. The qubits are located on the same chip, sepa-
rated by 3.1 mm, and are entangled by successively cou-
pling them to the strip resonator. Single qubit rotations are

effected by applying microwaves at the resonance fre-
quency of the corresponding qubit. Readout is effected
by letting the excited state tunnel to an auxiliary state
macroscopically distinct from both the ground state and
the excited state. All operations can be carried out on time
scales significantly shorter than 1 �s. (For a recent review
of Josephson phase qubits experiments see Ref. [25].)
The constant coupling between the qubits gives rise to

some CT. From the analysis of the experimental setup
performed in Refs. [22,33], it appears that the most sig-
nificant contribution to the CT occurs during the readout:
The tunneling of one qubit from the excited state to a
macroscopically distinct state sometimes forces the other
qubit to tunnel when in the ground state. This allows us to
estimate the CT at 0.0030 (see Section C of the
Supplemental Material [30]. The same value is also
obtained by solving the second order relaxation of
Eq. (6) using the set of observed data found in the
Supplemental Material of Ref. [22].
For the reported degree of CHSH violation I ¼ 2:0732,

and the above value of the CT, we find that P�
00 � 0:983. To

establish robustness we note that for as low a violation as
I ¼ 2:002 P�

00 � 0:998. This shows that useful random-

ness is extractable from this experiment.
Conclusion.—The analysis of any DI protocol requires

that we specify the amount of CT between the devices
(irrespective of whether it is vanishing or finite)—a
requirement that cannot be fully verified or implemented
in a DI manner. In this work we have shown that one can
relax the maxims appearing in previous works on DI RG,
by allowing for a small amount of CT between the quantum
systems. In this way we can keep most of the advantages of
the DI approach and at the same time reach data rates of
practical interest. Finally, we note that our approach can be
generalized to other DI protocols where the devices are in
the same lab, such as DI tests of genuine multipartite
entanglement [11]. More generally, it introduces a general
formalism to detect, quantify, and exploit quantum non-
locality in a rapidly increasing number of experimental
systems where some amount of cross-talk is present.
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