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The main goal of quantum metrology is to obtain accurate values of physical parameters using quantum

probes. In this context, we show that abstention, i.e., the possibility of getting an inconclusive answer at

readout, can drastically improve the measurement precision and even lead to a change in its asymptotic

behavior, from the shot-noise to the Heisenberg scaling. We focus on phase estimation and quantify the

required amount of abstention for a given precision. We also develop analytical tools to obtain the

asymptotic behavior of the precision and required rate of abstention for arbitrary pure states.
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Precision measurements play a key role in all sciences
and branches of technology. In this framework, quantum
systems have long been recognized to provide a substantial
precision enhancement in some important cases which,
along with recent advances in the control of individual
quantum systems, has fired broad interest in quantum
metrology [1]. In its simplest form, a quantum metrology
problem has the following structure. A quantum system
undergoes some physical interaction determined by some
continuous parameters. The value of the parameters gets
imprinted onto the evolved state and the task of the met-
rologist consists in uncovering it. For this purpose, she
performs a suitable measurement on the system and, based
on its outcome, she produces a guess for the unknown
value of the parameters as accurate as possible. The overall
performance of the whole procedure can be quantified by
the average of a figure of merit (typically the fidelity) over
some a priori distribution of the parameters and over all
possible outcomes. Phase estimation with pure states of N
qubits is a paradigmatic example of this endeavor and will
serve as the main exemplification of our findings.

In standard parameter estimation protocols [2–5] the
experimentalist is expected to produce a conclusive answer
(maybe not right or accurate enough), at each run of the
experiment. Here we show that there are situations where
the ultimate precision of the standard approach can be
improved substantially if one allows for a number of
inconclusive responses, where the metrologist abstains
from producing a guess. This is especially relevant in
situations where she can afford to rerun the experiment
(i.e., she can easily prepare a new instance of the problem)
or where she prioritises having high-quality estimates.

Abstention has already been used in the context of state
discrimination [6–9], where some fixed rate Q of inconclu-
sive outcomes can lower the probability of error significantly
(even down to zero, as in unambiguous discrimination [6]),
and can be seen as a particular example of postselection [10].
In the estimation framework the effects of abstention have
hardly been considered: Reference [11] is concerned with

computing the maximum estimation improvement with
unbounded abstention (which renders the procedure unsuit-
able for many practical purposes), while in [12] a fixed
amount of abstention is considered, though the analysis is
restricted to uncorrelated probes. In both cases abstention
has limited impact for large samples unless arbitrarily large
abstention is allowed.
In this Letter we show that when quantum correlations

are taken into account, a limited amount of abstention
can have a dramatic effect, in some cases leading to the
Heisenberg instead of the shot-noise scaling. Though
we focus on phase estimation, other problems, such as
direction estimation, can be tackled in the same way
(results will be given elsewhere [13]). We also present
a very general technique to obtain the asymptotic form
of pure-state parameter estimation problems, with or
without abstention. It is worth mentioning that even in
the standard approach to estimation (without abstention)
analytical asymptotic expressions were known in just a
few cases.
In phase estimation, one aims to optimally estimate the

parameter � of the covariant family of states fj�ð�Þi ¼
Uð�Þj�0ig�2½0;2�Þ, where Uð�Þ stands for the unitary trans-
formation Uð�Þjji ¼ ei�jjji, and j�0i is a normalized
fiducial state that in the eigenbasis of Uð�Þ can be written
as j�0i ¼

P
N
j¼0 cjjji 2 ðC2Þ�N . The fidelity between the

true phase � and its estimate �� can be written as ½1þ
cosð�� ��Þ�=2, where � is a subscript specifying that the

estimate is based on the outcome � of a generalized
measurement. This is characterized mathematically by
a positive operator valued measure (POVM) � ¼ f��g [
f�0g,�0 þ

P
��� ¼ 1, where�� � 0 outputs a conclu-

sive answer (from which an estimate is proposed) and
�0 � 0 outputs ‘‘abstention.’’ The probability of absten-
tion taking place is

Q ¼
Z d�

2�
h�ð�Þj�0j�ð�Þi; (1)
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and �Q ¼ 1�Q is the acceptance probability (rate at
which we provide definite estimates). The average fidelity
for this rate of abstention is

FðQÞ¼ 1
�Q

X
�

Z d�

2�

1þcosð����Þ
2

h�ð�Þj��j�ð�Þi: (2)

Estimation with abstention can be reduced to a standard
estimation problem by simply introducing the new POVM
~�, with elements given by ~�� � ð1��0Þ�1=2��

ð1��0Þ�1=2, and the new family of (normalized) states(
j ~�ð�Þi � ð1��0Þ1=2

�Q1=2
j�ð�Þi

)
�2½0;2�Þ

: (3)

This formulation brings forward an interpretation of the
role of abstention here: each initial state j�ð�Þi is trans-

formed into a new j ~�ð�Þi that ‘‘encodes’’ the unknown
parameter � in a more efficient way. This map improves
the estimation precision by effectively increasing the distin-
guishability between the signal states; therefore, it can only
be implemented in a probabilistic fashion (it succeeds with
probability �Q). This stochastic map is fully specified by the
optimal choice of �0, i.e., the one that maximizes (2).
Although this may seem a difficult optimization problem,
a huge simplification arises because of the covariance of the
family of states. Already from Eqs. (1) and (2) one can easily
see that the optimal POVM can be chosen to be covariant
under the set of unitaries fUð�Þg. In particular this means that
�0 can be taken invariant under the transformations fUð�Þg.
Thus, using Shur’s lemma one gets �0 ¼ P

jfjjjihjj, and
the maximization is over ffj: 0 � fj � 1gNj¼0. Note that the

transformed set of states fj ~�ð�Þig is also a covariant family,
just as the original one, with fiducial state

j ~�0i ¼
XN
j¼0

cj

ffiffiffiffiffi
�fj

q
ffiffiffiffi
�Q

p jji ¼ XN
j¼0

�jjji � j�i; (4)

where �fj � 1� fj.

Since the transformed states are still covariant, we

can choose ~� to be the well-known optimal continuous

and covariant POVM [2,5]: f ~�ð�Þ ¼ Uð�Þj�i�
h�jUyð�Þg�2½0;2�Þ, where j�i ¼ PN

j¼0 jji. Hereafter it is

assumed that the states have non-negative coefficients
�j � 0 (and hence cj � 0), because any phases present

in the coefficients cj (or �j) can be absorbed by the above

POVM elements. With this, the calculation of the fidelity
simplifies to

F ¼ 1
2 þ 1

2h�jMj�i; (5)

where in the eigenbasis of Uð�Þ the matrix of M is real
and tridiagonal, with elements Mij ¼ ð�i;jþ1 þ �i;j�1Þ=2.
The maximization over ffjg in (5) can be turned

into a maximization over the transformed states,
��maxj�ih�jMj�i¼maxf�jg

PN�1
j¼0 �j�jþ1, subject to the

constraints h�j�i ¼ 1 and �j � �cj, where � � �Q�1=2.

Then, the maximum fidelity for a given rate of abstention
Q is FðQÞ ¼ ð1þ �Þ=2.
For large enough abstention rates the inequality constraint

has no effect (provided cj � 0, 8j) and � becomes the

maximum eigenvalue of the matrix M. In this case, F� �
FðQ ! 1Þ is the maximum fidelity that can be achieved by
optimizing the components of the fiducial state; these are
given by the corresponding eigenvector j��i of M [11].
From the inequality constraint we obtain the critical accep-
tance rate �Q� ¼ minjðcj=��

j Þ2. That is, for abstention rates

such that Q � Q� ¼ 1� �Q� the fidelity attains its absolute
maximum value F�. In the other extreme, when no absten-
tion is allowed (Q ¼ 0), no maximization is possible; hence,
�j ¼ cj and � ¼ hcjMjci. For intermediate values of Q 2
ð0; Q�Þ the calculation becomes more tricky. For moderate
values of N, it can be easily cast as a semidefinite program-
ming (SDP) problem (see Supplemental Material [14]) and
hence solved efficiently to arbitrary accuracy [15].
However, the main focus of this work is on asymptotics

(large-N regime) and, in particular, on presenting an
approach that enables obtaining analytical asymptotic
expressions. With this aim, let us define S�1�h�jMj�i,
where we further introduce Lagrange multipliers b2=2 for
the normalization condition and sj, j ¼ 0; . . . ; N for the

inequality constraints �j � �cj, also called primal feasi-

bility conditions. We thus have to minimize

S ¼ 1

2

�XN�1

j¼0

ð�jþ1 � �jÞ2 þ �2
1 þ �2

N

�

� b2

2

�XN
j¼0

�2
j � 1

�
þXN

j¼0

sjð�j � �cjÞ; (6)

where the so-called dual feasibility conditions sj � 0, and

the complementary slackness conditions sjð�j � �cjÞ ¼ 0

must also be imposed, as dictated by the Karush-Kuhn-
Tucker (KKT) method (see, e.g., [15]).
Rather than attempting to solve the above minimization,

we will reframe it as a functional variational problem by
taking N to be asymptotically large. We first note that as N
goes to infinity, j=N approaches a continuous real variable
t. So, we define 0 � t � j=N � 1, and assume f�jg and
fcjg are a discretization of some continuous functions,

’ðtÞ ¼ �j

ffiffiffiffi
N

p
and c ðtÞ ¼ cj

ffiffiffiffi
N

p
. Note that ’ðtÞ � 0 and

c ðtÞ � 0, and the normalization condition
R
1
0 ’ðtÞ2 ¼R

1
0 c ðtÞ2 ¼ 1 is satisfied. It follows that �jþ1 � �j ’

N�3=2½d’ðtÞ=dt�, and we can write (6) as the functional

S½’� ¼ ’2ð0Þ þ ’2ð1Þ
2N

þ 1

N2

Z 1

0
dt

�
1

2

�
d’

dt

�
2

�!2

2
ð’2 � 1Þ þ �ð’� �c Þ

�
; (7)
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where ! ¼ Nb � 0 is the properly scaled Lagrange
multiplier and �ðtÞ is a function that interpolates the set

of multipliers fsjg, i.e., sj ¼ N�5=2�ðtÞ. With this, the

following conditions must hold: ’ðtÞ � �c ðtÞ � 0 (primal
feasibility), �ðtÞ � 0 (dual feasibility), and �ðtÞ�
½’ðtÞ � �c ðtÞ� ¼ 0 (complementary slackness).

Note that by imposing the boundary conditions ’ð0Þ ¼
0 and ’ð1Þ ¼ 0, the first (shot-noise scaling) term of
OðN�1Þ is cancelled. These conditions can be always met
if Q> 0. Furthermore, if c ðtÞ has wide (finite) support—
i.e., cj > 0 over a large (order N) range of j—the integral

in (7) will be finite as N ! 1 and the functional S½’� will
become OðN�2Þ; i.e., Heisenberg scaling will be attained.

The minimization of S½’� defines a mechanical prob-
lem, of which the second line in Eq. (7) is the action and
the corresponding integrand the Lagrangian. It describes a
driven harmonic oscillator with angular frequency !,
whose equation of motion is

d2’

dt2
þ!2’ ¼ �: (8)

To solve this problem, we first note that the slackness
conditions imply that either ’ðtÞ ¼ �c ðtÞ, in which case
we say t is in the so-called coincidence set C, or �ðtÞ ¼ 0.

In the second case, t 2 �C (the complement of C), the primal
feasibility condition is ’ðtÞ< �c ðtÞ and Eq. (8) becomes
homogeneous. It has the familiar solution ’ðtÞ ¼
A sin!tþ B cos!t, where A, B, and ! are constants to
be determined. In C, � is given by (8), where we make the
substitution ’ðtÞ ¼ �c ðtÞ. If we restrict ourselves to fidu-
cial states j�0i whose components cj are such that c ðtÞ is
continuous in the whole unit interval, one can show that the
solution ’ðtÞ and its first derivative must be also continu-
ous there [except in points of C where c ðtÞ itself is not
differentiable]. Most of the physically relevant cases are of
this type. By taking into account the boundary conditions,
as well as the ‘‘matching conditions,’’ namely, continuity
of ’ðtÞ and its derivative in the boundaries of C, one can
determine the arbitrary constants that arise in solving the
equation of motion, which include the location of the
boundaries of C. The minimum value of S for Q> 0 can
be expressed in terms of the Lagrange multiplier (function)
! (�), and the given function c , as

S ¼ 1

N2

�
!2

2
� �

2

Z 1

0
dt�c

�
: (9)

Note that the integral is effectively over C, where � ¼
�ðd2c =dt2 þ!2c Þ. In the following we solve some rele-
vant cases, but we first compute the fidelity for arbitrary
large rates of abstention, assuming cj � 0, 8j.

Large abstention.—For abstention rates very close to
one (large �), one has C ¼ ;, and the above reduces to a

maximum eigenvalue problem. The solution is ’ðtÞ ¼ffiffiffi
2

p
sin�t. This yields the asymptotic result

F� ¼ 1� �2

4N2
; (10)

which coincides with the known maximum fidelity for
optimal phase encoding [11,16].
Phase states.—The elements of this family are generated

by an equal superposition of all Fock states jji, cj ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
(hence proportional to the POVM seed state).

The corresponding continuous version is c ðtÞ ¼ 1.
Without abstention, Q ¼ 0 (� ¼ 1), the optimal phase
estimation precision provided by these states does not
exceed the shot-noise limit: 1� F ¼ 1=ð2N þ 2Þ. For
Q> 0 (� > 1) the situation changes markedly. We can
freely impose ’ð0Þ ¼ ’ð1Þ ¼ 0 and get rid of the shot-
noise type of term 1=N in (7). In a sufficiently small
neighborhood of t ¼ 0, we have ’ðtÞ � � < 0, and hence
�ðtÞ ¼ 0 there. If � is the maximum value of t less than
1=2 for which this condition holds, it must be a boundary
point of C. Then, for � � t � 1=2 the solution is given by
the rescaled input state ’ðtÞ ¼ �c ðtÞ ¼ �. Thus, ’ðtÞ ¼
A sin!t for t 2 ½0; �Þ and ’ðtÞ ¼ � for t 2 ½�; 1=2�.
Imposing the matching conditions we find �¼1�1=�2¼
Q, � � ffiffiffi

2
p

(i.e., Q� ¼ 1=2), and

’ðtÞ ¼
8<
:

�Q�ð1=2Þ sin�t
2Q 0 � t < Q;

�Q�ð1=2Þ Q � t � 1=2:
(11)

For 1=2< t � 1 the solution follows from the obvious
symmetry relation ’ðtÞ ¼ ’ð1� tÞ. We have C ¼ ½Q; �Q�
and �ðtÞ ¼ !2� for t 2 C. Therefore, Eq. (9) leads to

F ¼ 1� �2

16Q �QN2
; 0<Q � Q� ¼ 1=2; (12)

and for 1=2<Q � 1 we have F ¼ F� [see Eq. (10)]. We
note that even the slightest abstention rate unlocks the
probing capabilities of the phase states and drastically
changes the estimation precision from shot-noise (1=N)
to Heisenberg (1=N2) scaling [17].
Multiple copies.—These probe states have been widely

considered in quantum metrology. They have the form

j�ð�Þi ¼
 j0i þ ei�j1iffiffiffi

2
p

!�N
; (13)

and the coefficients of the corresponding fiducial state j�0i
read cj ¼ 2�N=2ðNj Þ�1=2. Their maximum precision for

Q ¼ 0 and large N is known to be 1� F ¼ 1=ð4NÞ [16].
In the asymptotic limit the rescaled components

ffiffiffiffi
N

p
cj

approach the function

c ðtÞ ¼
�

N

2�tð1� tÞ
�
1=4

exp

�
�N

2
Hðt k 1=2Þ

�
; (14)

where Hðt k 1=2Þ ¼ log2þ t logtþ ð1� tÞ logð1� tÞ is
the relative entropy between two Bernoulli distributions
with success probabilities t and 1=2. The symmetry of
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the problem suggests using the variable 	 ¼ t� 1=2,
	 2 ½�1=2; 1=2�. As a function of this new variable ’ð	Þ
must be even [we slightly abuse notation by writing’ðtð	ÞÞ
in short as ’ð	Þ]; hence, it must have the form

’ð	Þ ¼
(
A cos!	; 0 � j	j � �;

�c ð	Þ; � < j	j � 1=2;
(15)

where as above!,� and A are determined by the matching
and normalization conditions. The resulting equations
cannot be solved in full generality; however, we will obtain
analytical solutions in two relevant regimes. To this end,

we note that in the region j	j & N�1=2 [i.e., around the
peak at t ¼ 1=2 of (14)], c ð	Þ behaves as the Gaussian

distribution c ð	Þ 	 ð2N=�Þ1=4e�N	2 , whereas at the tails

(j	j>N�1=2) it falls off at an exponential rate lower
bounded by Hð1=2þ � k 1=2Þ=2.

In the first regime, the abstention rate Q has a fixed non-
zero value (independent ofN). This requires that the bound-

ary point � scales as the width of c ð	Þ, i.e., �
 N�1=2;
thus c ð	Þ is accurately given by its Gaussian approxima-
tion. This observation, along with a suitable rescaling of !
and A, enables us to obtain the solution in parametric
form: (Qð�Þ, Sð�Þ) (see Supplemental Material [14]).
In Fig. 1(a) we plot NS ¼ 2Nð1� FÞ as a function of Q.
Despite the strong dependence on the abstention rate, par-
ticularly at Q & 1, the precision will be shot-noise limited
in the whole interval ½0; 1Þ. We see that, e.g., an abstention
of about 90% has the same effect as doubling the number
of copies in the standard approach, with Q ¼ 0. Also, for
vanishing abstention rate we recover the well-known result
2Nð1� FÞ ¼ 1=2. The exact (numerical) profile of the

transformed state j ~�0i is shown in Fig. 1(b), together
with the analytical result ’ðtÞ, for an abstention rate of
56% and two different values of 20 and 80 copies for N.

We next explore a second regime in which the
Heisenberg limit 1� F
 N�2 (i.e., S
 N�2) is attained.
For that we need that the function ’ð	Þ in (15) has a wide

(nonvanishing) support as N goes to infinity. This is easily
accomplished by taking the boundary point � to be inde-
pendent of N. In this situation, once N is large enough,
the coincidence set C lies on the tails of c ð	Þ, where this
function falls off exponentially at the dominant rate of
Hð1=2þ � k 1=2Þ=2. Solving the matching and normal-
ization conditions, we obtain the fidelity,

F ¼ 1� �2

16N2�2
þOðN�3Þ; 0<� � 1=2 (16)

and the acceptance rate, Q
 expf�NHð1=2þ � k 1=2Þg.
Thus, the Heisenberg limit scaling 1=N2 can be attained if
such an exponential rate of acceptance is affordable. Note
that the critical acceptance rate is �Q� ¼ 2�N (� ! 1=2),
below which F ¼ F�.
Although in this Letter we have focused on phase esti-

mation, our methods directly apply to other problems such
as direction estimation [13]. In this case one can define
the analogous of the two fiducial states introduced above.
Our results nicely mirror those presented here, the main
difference being the replacement of the trigonometric
functions by Bessel functions.
Recent works [18] show that under quite general con-

ditions, noise renders (asymptotic) Heisenberg scaling
unattainable. A quantitative study of the benefits of absten-
tion in general noisy scenarios requires to extend the
presented methods to mixed states [13]. Following similar
arguments as in [18] and considering some particular noise
sources, one can check that abstention will not be able to
restore the Heisenberg scaling. However, abstention can
still provide a significant enhancement in precision, espe-
cially for moderate (experimentally relevant) values of N;
see also [12]. The role of abstention with restricted mea-
surement capabilities, such as local addressing or other
experimentally motivated constraints, is also a relevant
open question that requires further study.
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