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One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger,

Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ

paradoxes are known to exist only in systems containing an odd number of particles. Here we shall

construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph

states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising

from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose

maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the

quantum contextuality in a state-independent fashion.
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Local realism cannot make quantum theory complete, as
argued by Einstein, Podolsky, and Rosen (EPR) based on
the belief that every element of physical reality must have a
counterpart in a complete theory [1]. According to them, an
element of reality is corresponding to a physical quantity
whose value can be predicted with certainty without in any
way disturbing a system. No disturbance is ensured by the
locality, i.e., the assumption that the result of a measure-
ment cannot be affected by any spacelike separated events.
The clashing between the local realism and quantum me-
chanics as revealed by several no-go theorems such as
Bell’s theorem [2], Greenberger-Horne-Zeilinger (GHZ)
theorem [3–5], and Kochen-Specker (KS) theorem [6],
shows that the quantum mechanical description of our
world is nonlocal, or more generally contextual. This
fascinating and fundamental quantum feature of nonlocal-
ity and contextuality has been verified in experiments on
various physical systems, e.g., Ref. [7], via the detection of
violations of Bell inequalities and KS inequalities [8–10].

Among these genius approaches, GHZ theorem [3,4]
provides us an ‘‘all-versus-nothing’’ [11] test of a stronger
type nonlocality, referred to as GHZ nonlocality, than
Bell’s nonlocality. This is a state-dependent argument:
because of the perfect correlations in some special
state called the GHZ state, e.g., a 3-qubit GHZ state j�i ¼
1ffiffi
2

p ðj000i � j111iÞ, some local observables are elements of

reality according to EPR. For example, since the observ-
able �1

x�
2
y�

3
y stabilizes the GHZ state, i.e., �1

x�
2
y�

3
yj�i ¼

j�i, observables �1
x, �

2
y, �

3
y are all elements of reality.

Here, �k
x;y;z denote 3 standard Pauli matrices for the kth

qubit. Similarly, from two other stabilizers �1
y�
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y and
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x of j�i we know that all �k

x;y are elements of

reality and must have realistic values mx;y
k ¼ �1 for k ¼

1, 2, 3. Realistic values are supposed to obey the same

algebraic relations as their corresponding observables.
That is to say we have on the one hand mx

1m
x
2m

x
3 ¼ �1,

since �1
x�

2
x�

3
xj�i ¼ �j�i and mx

1m
y
2m

y
3 ¼ my

1m
x
2m

y
3 ¼

my
1m

y
2m

x
3 ¼ 1. On the other hand, since ðmy

kÞ2 ¼ 1, we
have identity mx

1m
x
2m

x
3 ¼ ðmx

1m
y
2m

y
3Þðmy

1m
x
2m

y
3Þðmy

1m
y
2m

x
3Þ

which gives rise to a contradiction �1 ¼ 1.
This elegant presentation of the GHZ paradox for 3

qubits is due to Mermin [5] soon after its first discovery
for a 4-qubit GHZ state [3] and has already been verified
experimentally [12]. Although originally the GHZ argu-
ment is state dependent, it was found recently that any
GHZ paradox can give rise to a KS inequality for a state-
independent test of quantum contextuality [8]. In addition
to its fundamental role played in our understanding of
quantum nonlocality and contexuality, the GHZ paradox
also finds numerous applications such as in the quantum
protocols for reducing communication complexity [13]
and for secret sharing [14].
Compared to the bipartite and two-level case, multi-

partite and multilevel nonlocality or entanglement is
poorly understood. In some quantum informational tasks
such as quantum cryptography, the usage of multidimen-
sional systems offers advantages such as an increased level
of tolerance to noise at a given level of security and a
higher flux of information compared to the two dimen-
sional case [15]. Thus, it is crucial to investigate the
relevant physical properties from some subclasses of these
systems, e.g., GHZ nonlocality from a special kind of qudit
states. Earlier efforts [16,17] to generalize GHZ paradoxes
to multidimensional and multilevel systems can be reduced
either to the qubit cases or to fewer particle cases, except
the cases of n ¼ 4jþ 3 for qubits [17]. Genuine multi-
partite multilevel GHZ paradoxes were first found by Cerf
et al. for (dþ 1)-partite d-level systems with d being even
[18]. An unconventional approach by using concurrent
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observables, not commuting yet having a common eigen-
state, is proposed by Lee et al. to construct a GHZ paradox
for the GHZ states of an odd number of particles [19]. Also
a GHZ-like argument (all-versus-something) is proposed
by Kaszlikowski et al. for d-partite d-level systems [20], in
which concurrent observables have been used implicitly.
Later, DiVincenzo and Peres [21] found out that not only
can GHZ states exhibit the GHZ paradox but also those
code words, which are one kind of multipartite entangled
states used in quantum error corrections [22], can exhibit
GHZ nonlocality. But so far genuine multipartite and mul-
tilevel GHZ paradoxes for an even number of particles are
still missing.

It turns out that GHZ states as well as code words from
stabilizer codes [23] are graph states [24] which are
essential resources for the one-way computing [25] and
also provide an efficient construction of quantum error-
correcting codes [26]. It is thus natural to take advantage
of the perfect correlations in graph states for the con-
structions of GHZ paradoxes. In this Letter we shall
identify those graphs, called GHZ graphs, whose corre-
sponding graph states lead to genuine multipartite multi-
level GHZ paradoxes. Furthermore, we derive a Bell
inequality for multipartite and multilevel systems as
well as a state-independent KS inequality for every
GHZ graph.

As a graph state for qubits is related to a simple graph, a
nonbinary graph state [27–29] is associated with a
weighted graph. Let Zd ¼ f0; 1; . . . ; d� 1g denote the
ring with addition modulo d. A Zd-weighted graph G ¼
ðV;�Þ is composed of a set V of n vertices and a set of
weighted edges specified by the adjacency matrix �, a
symmetric n� n matrix with zero diagonal entries and
the matrix element �uv 2 Zd denoting the weight of the
edge connecting the vertices u and v. A graph is connected
if for any pair of vertices u, v there exists a finite number of
vertices fvigKi¼0 such that

Q
K�1
i¼0 �viviþ1

� 0 with u ¼ v0

and v ¼ vK.
We denote by Dv the degree of vertex v 2 V which is

the sum of the weights of all the edges connecting to v and
byW the total weight of G which is the sum of the weights
of all the edges. Explicitly, we have

Dv ¼ X
u2V

�uvðv 2 VÞ; W ¼ 1

2

X
u;v2V

�uv: (1)

A GHZ graph is a connected Zd-weighted graph satisfying
(i) the degree of each vertex is divisible by d, i.e., Dv � 0
mod d, while (ii) the total weight is NOT divisible by d;
i.e., W 6�0 mod d. From these two conditions it follows
immediately that the GHZ graph does not exist in odd

dimensions and !W ¼ �1, where ! ¼ ei2�=d. In fact,
from the first condition, there is an integer tv such that
Dv ¼ dtv for each v 2 V, and from the fact that the total
weightW ¼ dt=2with t ¼ P

v2Vtv is an integer, since � is

symmetric, it follows that if d is odd then t must be even
and thus W is divisible by d. Furthermore, in even dimen-
sions, the total weightW is not divisible by d if and only if t
is odd and thus !W ¼ ð�1Þt ¼ �1. In what follows
we shall always assume d to be even. A GHZ graph is
called ‘‘primary’’ if for each vertex a 2 V there exists a
pair of vertices b, c such that �ab and �ac are coprime, and
‘‘weakly primary’’ if there exist three vertices a, b, c 2 V,
such that �ab is coprime with �ac.
In the case of d ¼ 2 a GHZ graph has an odd number

of edges and every vertex has an even number of neigh-
bors. All GHZ graphs for d ¼ 2 are primary. For ex-
ample, a loop graph with an odd number of vertices and
a complete graph with 4jþ 3 (j � 0) vertices are pos-
sible GHZ graphs. There is only a single GHZ graph on 3
vertices as shown in Fig. 1(a) and it is clear that it is not
weakly primary if d > 2. In the case of n ¼ 4 all possible
GHZ graphs are shown in Fig. 1(b) with weights satisfy-
ing aþ bþ c ¼ d=2. If d ¼ 4k then d=2� 1 ¼ 2k� 1
are coprime and thus, by choosing, e.g., a ¼ 1, c ¼ 1, we
obtain a primary GHZ graph. If d ¼ 4kþ 2 then there
always exists a vertex with all edges having even weights,
since d=2 is odd, so that only a weakly primary GHZ
graph exists in this case. Examples of primary GHZ
graphs for arbitrary n � 5 and even dimensions are
shown in Figs. 1(c)–1(e). The primary GHZ graph on 5
vertices as shown in Fig. 1(c) can be generalized to any
odd number of vertices.
Consider a system of n particles each of which has d

energy levels, a qudit for short, and label them with V. Let
fjsivjs 2 Zdg be the computational basis for qudit v 2 V
and fjsijs 2 ZV

d g is a basis for n qudits where ZV
d is the

set of all n-dimensional vectors s ¼ ðs1; s2; . . . ; snÞ with

FIG. 1 (color online). Examples of GHZ graphs. Unlabeled
thin black or red edges have weight 1 or d� 1, respectively. All
possible GHZ graphs on 3 and 4 vertices are shown in (a) and
(b), where a0 ¼ d

2 þ a, b0 ¼ d
2 þ b, and c0 ¼ d

2 þ c with aþ bþ
c ¼ d=2. A GHZ graph on 5 vertices is shown in (c) where the
thick red edges have weight d=2� 1. In (d) and (e) two primary
GHZ graphs on 2kþ 4 and 2kþ 5 vertices ðk � 1Þ are shown.
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components sv 2 Zd for all v 2 V. To any weighted graph
G ¼ ðV;�Þ on jVj ¼ n vertices we can associate with a
qudit graph state

j�i ¼ 1

dn=2

X
s2ZV

d

!1=2s���sjsi; (2)

which is also the unique joint þ1 eigenstate of n commut-
ing vertex stabilizers

gv ¼ Xv

Y
u2V

Z�uv
u ; (3)

i.e., gvj�i ¼ j�i for all v2V. Here we have introduced the
generalized bit shift operator Xv¼

P
s2Zd

jðsþ1Þmoddihsjv
and phase shift operators Zv ¼ P

s2Zd
!sjsihsjv for each

qudit v 2 V. It is easy to check that Xd
v ¼ Zd

v ¼ I and
ZvXv ¼ !XvZv. Our main result reads as follows:

Theorem: For each (weakly) primary GHZ graph G ¼
ðV;�Þ on jVj ¼ n vertices, with weights taken values inZd,
the graph state j�i provides a (weakly) genuine n-partite
d-level GHZ paradox.

Before embarking on the proof we should clarify
what we mean by genuine n-partite and d-level and
give an example. According to Ref. [18] a GHZ para-
dox, formulated via a set of commuting observables, is
said to be genuinely n-partite if one cannot reduce the
number of parties and still have a Mermin-GHZ para-
dox. A GHZ paradox is (weakly) genuine d-level if one
cannot reduce the dimensionality of the Hilbert space of
(all) any one of the parties to less than d and still have a
paradox.

As an example, let us consider the GHZ graph as shown
in Fig. 1(b) in the case of n ¼ 4 and the following 5
commuting observables that stabilize the corresponding
graph state

X Za0 Zb Zc þ1

Za0 X Zc0 Zb0 þ1

Zb Zc0 X Za þ1

Zc Zb0 Za X þ1

Xy Xy Xy Xy �1;

(4)

which provide us a GHZ paradox. Measurement of the
product of the operators in each row gives a certainty result
1 or�1 as listed in the right column of Eq. (4) by quantum
mechanics. With the analogue to EPR’s argument, the
result mx

v or mz
v of measuring the corresponding

d-outcomes measurements Xv or Zv on the vth qudit can
be predicted in advance with certainty with the help of the
results of spacelike separated measurements of X or Z on
the other three qudits and are therefore elements of reality.
Because the algebraic relations are preserved, we have

mx;z
v ¼ !k with ! ¼ ei2�=d for some k 2 Zd and

ðmx
1Þðmz

2Þa0 ðmz
3Þbðmz

4Þc ¼ 1

ðmz
1Þa0 ðmx

2Þðmz
3Þc0 ðmz

4Þb0 ¼ 1

ðmz
1Þbðmz

2Þc0 ðmx
3Þðmz

4Þa ¼ 1

ðmz
1Þcðmz

2Þb0 ðmz
3Þaðmx

4Þ ¼ 1

ðmx
1Þ�1ðmx

2Þ�1ðmx
3Þ�1ðmx

4Þ�1 ¼ �1:

(5)

The contradiction lies in the fact that all five equations in
Eq. (5) cannot hold simultaneously. In the case of d ¼ 4 if
we choose a ¼ b ¼ 1 and c0 ¼ 2 with a0 ¼ b0 ¼ 3 and
c ¼ 0 then the GHZ graph is primary and the correspond-
ing GHZ paradox is genuine 4-partite and 4-level. In the
case of d ¼ 6 we can choose a ¼ b ¼ c ¼ 1 and a0 ¼
b0 ¼ c0 ¼ 4 such that for the second qudit there exists a
projection to a qutrit by identification Z2 for d ¼ 6 with Z
for d ¼ 3. Thus it provides an example of weakly genuine
6-level GHZ paradox that can be regarded as GHZ paradox
on a hybrid system of three 6-level system plus a qutrit.
Proof.—Let G ¼ ðV;�Þ be a GHZ graph; i.e., the degree

of each vertex Da is divisible by d and the total weight W
satisfies !W ¼ �1. For each qudit v 2 V we measure two
unitary observables Xv and Zv with outcomes assigned to
values mx

v, mz
v 2 f!tjt 2 Zdg, respectively. First of all

these values are elements of reality because of the perfect
correlations gvj�i ¼ j�i (v 2 V). In any local, or non-
contextual, hidden variable models these values are inde-
pendent of which observables might be measured by other
observers. Furthermore, they must satisfy the same alge-
braic rules, e.g., the product rule, as their quantum counter-
parts do. For example, from the definition of the vertex
stabilizer gv it follows

Mv :¼ mx
v

Y
u2V

ðmz
uÞ�uv ¼ 1 (6)

for each v 2 V. On the other hand from the constraint
XVj�i ¼ �j�i, because of the identity

Y
a2V

ga ¼ !WXV

Y
a2V

ZDa
a ¼ �XV; (7)

it follows that
Q

v2Vm
x
v ¼ �1which is impossible becauseQ

v2VMv ¼ Q
v2Vm

x
v, in which the fact thatDv is divisible

by d has been used.
By definition a GHZ graph is a connected graph and thus

for each partition of n observers into two groups some of
nþ 1 unitary observables will not be commuting when
restricting to either one of two groups. Therefore the GHZ
paradox for j�i is a genuine n partite. Furthermore, if the
GHZgraph is primary then each vertex is attached to at least
one pair of edges of coprime weights. If there were a
projection to lower dimensions for a qudit, some eigenstates

of Xa and those of Z�ab
a and Z�ac

a are orthogonal. This is
impossible because first there always exist p, q 2 Zd such
that p�ab þ q�ac ¼ 1 mod d and, second, Xv and Zv are
two complementary observables whose eigenstates cannot
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have a zero overlap, which is the case if the dimensionality
can be reduced. j

Some remarks are in order. First, for we have con-
structed genuine n-partite and d-level GHZ paradox with
n � 5 can be even. Second, any state that is related with
GHZ graph states via local unitary transformations exhibits
also GHZ nonlocality. Third, for a graph that is not
GHZ graph it is also possible to construct a GHZ paradox
for the graph state if the underlying graph contains a GHZ
subgraph. A subgraph H ¼ ðV0;�0Þ of a weighted graph
G ¼ ðV;�Þ is also a Zd-weighted graph with a vertex set
given by V 0 � V and edges specified by �0

ab ¼ �ab if a,
b 2 V 0. If furthermore the subgraph is a GHZ graph we
shall refer to it as a GHZ subgraph of G. Suppose that the
graph G contains a GHZ graph H ¼ ðV 0;�0Þ with jV0j ¼
m< n, then the mþ 1 observables gu with u 2 V0 andQ

u2V 0gu yield a GHZ paradox for the graph state j�i. It is
clear that it is only a genuine m-partite GHZ paradox if the
GHZ subgraph is primary. For example, the 4-qubit GHZ
state is equivalent to the graph state corresponding to the
complete graph on 4 vertices, which contains a loop of
length 3 as a GHZ subgraph. In fact the original GHZ proof
[4] revealed a 3-partite GHZ nonlocality using this GHZ
subgraph.

As the first application we shall derive a Bell inequality
with two measurement settings for each observer with the
help of the GHZ paradox derived from a GHZ graph.
Consider two d-outcome measurements Av and Bv for
each observer v 2 V and assign values in f!tjt 2 Zdg to
them (Bell-KS value assignment). For each GHZ graph
G ¼ ðV;�Þ we introduce a Bell operator as

B G ¼ Xd�1

k ¼ 1
k odd

2

d

�X
v2V

Ak
v

Y
u2V

Bk�uv
u � Y

v2V

Ak
v

�
: (8)

Taking into account the identity
Pd�1

k¼0 !
kl ¼ d�l;0 for arbi-

trary l 2 Zd and denoting AV ¼ Q
v2VAv and Nv ¼

Av

Q
u2VB

�uv
u for each v 2 V, where �i;j is the standard

Kronecker delta symbol, we have

B G¼��1;AV
��1;AV

þ X
v2V

ð�1;Nv
���1;Nv

Þ�n�1: (9)

The inequality holds in any local realistic theory because if
there are n positive terms then there is necessarily a nega-
tive term in BG: If Nv ¼ 1 for every v 2 V then it holds
AV ¼ 1 which contributes a negative term; if Nv ¼ 1 for
all v 2 V � fv0g and AV ¼ �1 then it necessarily holds
Nv0

¼ �1 because AV ¼ Q
v2VNv. Furthermore it is easy

to see that BG � nþ 1, which is attained by the graph
state j�i with h�jBGj�i ¼ nþ 1 in which Av and Bv are
chosen to be Xv and Zv, respectively, for each v 2 V. In
this case the quantum to classical ratio ðnþ 1Þ=ðn� 1Þ is a
constant independent of the dimension, comparing to that
of Ref. [30].

Every GHZ paradox leads also to a proof of KS theorem.
And any proof of KS theorem can be converted to an
experimentally testable inequality, called as KS inequality,
in the manner of Cabello [8]. As the second application we
consider the following KS inequality

1

2

�
Xy
V

Y
v2V

Xvþ
X
v2V

gyvXv

Y
u2V

Z�uv
u þH:c:

�
c

�1

2

�
Xy
V

Y
v2V

gvþH:c:

�
c
�Cnþ1;d; (10)

where, with � ¼ d
2ðnþ1Þ and � ¼ 2�=d, we have denoted

Cnd

nþ1
¼ð��b�cÞcosd�e�þð1þb�c��Þcosb�c�: (11)

First, each term, e.g.,hXy
V

Q
v2Vgvic, is the abbreviated form

of the classical correlation of nþ 1 observables, e.g.,

hXy
Vg1g2 . . . gnic. Second, the upper bound can be easily

inferred from the Lemma proved in the Supplemental
Material [31]. Third, we have Cnþ1;d < nþ 2 while the

quantum mechanical value of the left-hand side of Eq. (10)
equals to nþ 2 identically and therefore violates the above
KS inequality in a state-independent fashion.
In summary, first of all we have identified a special kind

of graphs, called GHZ graphs, whose corresponding graph
states give rise toGHZparadoxes. Except for the casen ¼ 4
with d ¼ 4kþ 2 for which only a weakly genuine GHZ
paradox is found we have derived genuine n-partite and
d-level GHZparadoxes from qudit graph states correspond-
ing to GHZ graphs with n � 4 and even d being arbitrary.
Second, as applications for each GHZ graph we derive a
Bell inequality with two d-outcome observables for each
observer whose maximal violation is attained by the corre-
sponding graph state as well as a state-independent KS
inequality that is satisfied by any noncontextual hidden
variable models. This would be helpful to the analysis of
multipartite contextuality or multipartite nonlocality. It
should be noted that GHZ paradoxes may exist for those
states that are equivalent to the graph states under local
Clifford (LC) transformations. However, the conditions
under which both two GHZ paradoxes arising from two
LC equivalent states are genuine n-partite seem to lie out of
the reach of current Letter. Besides, the examples we are
analyzing here involve only some special classes of graph
states, so figuring out other classes of graph states which are
consistent with our theorem are still meaningful as for fixed
parties n, different graphs may have different robustness
against decoherence, which may help to design new quan-
tum protocols for reducing communication complexity.
Ironically, a genuine 4-partite GHZ paradox is still missing
for the original 4-qubit GHZ state.
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