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Modeling Cytoskeletal Traffic: An Interplay between Passive Diffusion and Active Transport
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We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a
microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive
cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in
a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for
steady state transport, corresponding to the scale of the network, of individual segments, or local to sites.
At low exchange rates strong density heterogeneities develop between different segments in the network.
In this regime one has to consider the topological complexity of the whole network to describe transport.
In contrast, at moderate exchange rates the transport through the network decouples, and the physics is
determined by single segments and the local topology. At last, for very high exchange rates the
homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams
for the network to identify these different regimes. Based on this method we develop an intuitive but
generic picture of how the stationary state of excluded volume processes on complex networks can be
understood in terms of the single-segment phase diagram.
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Introduction.—Statistical physics has been very success-
ful in deducing macroscopic properties of materials from
the interactions between their microscopic components.
Active matter systems, on the other hand, such as active
colloids, animal flocks, or cytoskeletal assemblies, are
prone to develop out-of-equilibrium patterns. These spatial
heterogeneities are in fact essential to life processes [1].

Here we would like to initiate a microscopic statistical
physics approach to describe the collective organization of
molecular motors in cells. Motor proteins navigate actively
throughout the cell [2,3] along the cytoskeleton, a network
of filamentous assemblies spanning the cytoplasm. These
proteins can exert forces, depolymerize filaments and
transport biological cargos along the cytoskeleton [4],
and thus play an important role in the assembly, self-
organization, and functioning of cells [5]. Single-molecule
properties of the motors are well studied and can now be
measured accurately in vivo [6]. But understanding how
motors collectively self-organize remains a very important
step in developing a microscopic vision of intracellular
organization.

Macroscopic approaches to study intracellular motor
protein transport have been developed [7], including efforts
to introduce microscopic aspects [8,9], but a generic
microscopic picture of cytoskeletal transport has yet to
emerge. Here we present a tentative approach using a
minimalistic model for cytoskeletal active transport, which
consists of directed motion of particles (motor proteins)
along the network (cytoskeleton) and diffusion in the bulk
(cytoplasm), see Fig. 1. We model the directed motion
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along the cytoskeleton using the totally asymmetric simple
exclusion process (TASEP) [10] along a disordered
directed network [11]. The binding and unbinding of par-
ticles between the network and the bulk is represented via
Langmuir kinetics (LK) [12]. We consider the particles in
the bulk to be infinitely diffusive which, as we will show, is
a relevant limiting case.

TASEP is a fundamental model in nonequilibrium
physics [13], but it is also used in more applied topics,
such as modeling macromolecules moving through capil-
lary vessels [14], electrons hopping through a quantum-dot
chain [15], and vehicular traffic [16]. LK, on the other
hand, is a well-known fundamental equilibrium process
in chemical physics [12].

Our model constitutes a generalization of transport
through closed networks [11] to open systems, as they
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FIG. 1 (color online). Statistical physics model of cytoskeletal
transport, capturing the competition between active transport of
particles through a network (cytoskeleton) with diffusion in a
bulk reservoir (cytoplasm).
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are relevant for cytoskeletal transport. It may also be seen
as a generalization to a large scale network of the totally
asymmetric exclusion process with Langmuir kinetics
(TASEP-LK) on a single segment [17], which has been
shown to quantitatively describe in vitro experiments of
motor proteins [18]. Our study differs from previous work
[8] in that we consider exclusion interactions and disor-
dered networks, both essential points to the physical
picture we develop.

The fundamental question we address is how spatial
heterogeneities emerge in such open active systems, here
due to the competition between diffusion in a reservoir
(which spreads particles homogeneously) and active trans-
port along a network (which generates heterogeneities
[11]). We will show how this competition is governed by
the hopping rate for particles on the network, the exchange
rates with the reservoir, and the filament length. One main
result of our work is that there exist three regimes of
transport through complex networks which are linked to
the scale at which spatial density heterogeneities arise: the
network, the segments, or the sites.

Microscopic model for cytoskeletal transport.—We rep-
resent the cytoskeleton as a network of directed segments
of L sites each, connected by junction sites, see Fig. 2(a).
We use random networks to reflect the topological com-
plexity of the cytoskeleton, a standard approach in model-
ing networks [19]. Specifically we use Erdos-Rényi graphs
of mean connectivity ¢, as in Ref. [11]. Whereas the
specific topology is not important for our qualitative
results, the fact that networks are irregular, i.e., that the
number of incoming ¢!, and outgoing c¢ segments of the
junction v differ, is relevant.

In each directed segment particles move according to
TASEP-LK rules [17]: particles hop unidirectionally at
rate p, subject to exclusion interactions. Furthermore, par-
ticles obey binding-unbinding kinetics with attachment
rate w, and detachment rate wp respectively, at every
site along the network. Particles in the reservoir are
assumed to diffuse infinitely fast.

The phase diagram of TASEP-LK has been determined
[17] for a single segment connecting a reservoir with entry
rate « to a reservoir with exit rate 8 (see Supplemental
Material [20]). TASEP-LK is best characterized in terms
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FIG. 2 (color online). Sketch of the method to study transport
through complex networks here for TASEP-LK. Each segment
of the network (a) is considered to connect to two reservoirs with
effective rates a.; and B.4 (b), which are set by the junction
densities.

of the dimensionless parameters )4, = w,L/p and ), =
wpL/p, where ), quantifies the fraction of the segment
which an isolated particle typically covers before detach-
ing [17]. It is convenient to consider the parameters () =
(Q4 + Qp)/2, characterizing the total exchange between
reservoir and segment, and the ratio K = Q 4/, which
sets the equilibrium Langmuir density p, = K/(K + 1).

The (a, B)-phase diagram of TASEP-LK is fully char-
acterized in terms of the parameters ) and K (see
Refs. [17,20] and Fig. 4). In the following, we refer to
low density (LD), high density (HD) and maximum current
(MC, or M for “Meissner”” in Ref. [17]) phases. All of
these reduce to TASEP phases with a flat density profile for
Q) = 0[10]. Furthermore, LD and HD zones can coexist on
the same segment separated by a domain wall, leading to a
coexistence phase (LD-HD).

Mean field method for TASEP-LK on networks.—We
analyze TASEP-LK by extending the mean field arguments
for TASEP presented in Ref. [11]. In this approach every
segment (v, v’) connecting two vertices v and v’ is consid-

ered to be governed by effective entry and exit rates ;' )

and B?lf}fv,), see Fig. 2(c). These rates are in turn determined
by the average densities p, and p,s at the junction sites
[11,21]: @2, = pp,/c and B, = p(1— p,s), where the
latter condition reflects the exclusion constraint at the junc-
tions. Balancing the currents at the junctions leads to the
following closed set of equations in p,,:

9Py _ Py [ _ ]
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where the sums are over incoming (outgoing) segments,
and J*[a/p, B/p] are the currents entering (leaving) a
segment with rates a (B). The expressions for J= are
readily available [17,20]. Because of the Langmuir process,
the current is not constant along the segment, such that
J~ # J*. Solving Eq. (1) yields the complete stationary
state of all segments in the network.

The overall particle density on a network immersed in a
reservoir is equal to the Langmuir density p., set by the
ratio K [22]. In the following we discuss the physical
phenomena on the network at fixed K as the exchange
parameter () interpolates from TASEP with purely active
transport () = 0) to the limit at very high binding-
unbinding rates where the passive diffusion process domi-
nates ({) — o0). The data shown here have been obtained
using K = 1.5, which is a reasonable value for motor
proteins [23] and theoretically not specific in any way:
our analysis is general, and only very high and very low
values of K require an additional discussion [22].

Decoupling due to particle exchange.—In principle, the
continuity equations (1) couple the densities p,, and p,s of
those junctions which are linked by a segment (v, v’): it is
this coupling which makes the transport problem global,
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making it necessary to analyze the whole network
simultaneously.

Here we exploit one feature of TASEP-LK, which we
state by saying that the binding-unbinding process can
“decouple” the currents at the segment boundaries.
Indeed, for the composite LD-HD phase it is known [17]
that the in-current J~ depends on the in-rate o only,
whereas the out-current J* depends on the out-rate 3¢
only. Any LD-HD segment therefore lifts one coupling
constraint in Eq. (1), since the in and out currents J= are
determined locally by the junction densities p, and the
local connectivity.

When complete decoupling is achieved, as is expected at
high values of (), one can directly deduce the junction
densities for an arbitrary network. As presented in the
Supplemental Material [20], this leads to an exact solution
of the mean field Eq. (1). For K > 1 we have

¢
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In Fig. 3 we compare these analytical predictions based on
complete decoupling to both a (numerical) full mean-field
solution to Eq. (1) and to simulations. For low values of
Q) the fully coupled description in Eq. (1) is necessary
(especially for low mean connectivity c). Surprisingly, the
decoupled description in Eq. (2) is excellent even down to
relatively low values of ). This is an important result, as
it shows that single segment TASEP-LK [17] suffices to
describe transport through any complex network for a
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FIG. 3 (color online). Average current as a function of the
exchange parameter (), for three different (average) connectiv-
ities (¢ =2, ¢ = 10, and ¢ — o) at K = 1.5. Agreement be-
tween simulation (symbols, for L = 400) and mean-field results
[solid lines, Eq. (1)] is excellent. The (red) dashed line is the
current obtained from the simplified mean-field result [Eq. (2)]
while the dotted line denotes the Langmuir current J/p =
pe(1 — pe). Results are for a single graph instance of O(10%)
junctions.

wide ) range. For comparison, we have also indicated
the average mean-field current in the ¢ — oo limit, i.e., the
TASEP-LK current which is maintained even when all
junctions are blocked (a°ff = g°ff = 0). This constitutes
a lower bound to any current in any network.

Effective rate plots.—Here we introduce effective rate
plots as a way to understand intuitively the physics of
active transport through networks by allowing visualiza-
tion of the whole stationary transport state of the network.
In Fig. 4 we map the effective rates (a,, B,) of each
segment s, obtained by numerically solving the full mean
field Eq. (1), onto the single segment phase diagram. Note
that the scattering of effective rates is due to the irregularity
of the networks considered.

For sufficiently high ¢ Fig. 4 reveal that the effective
rates cluster close to the origin, in the LD-HD phase; this
explains why the simplified Eq. (2) work well for high ¢ in
Fig. 3. When increasing ) the TASEP-LK phase diagram
changes. In particular, the LD phase reduces in favor of the
LD-HD phase. Moreover, at high ) one notices a specific
alignment of the effective rates as given by the decoupled
Eq. (2).

In the following section we show how effective rate plots
allow us to rationalize the scale at which density hetero-
geneities appear in the network.

Heterogeneities for TASEP-LK on irregular networks.—
The parameter () regulates the way particles distribute
along the network, at overall density p,, and thus deter-
mines how heterogeneities develop. We characterize the
stationary state from the effective rate plots by determining
the fraction of segments occupying the corresponding
phases, see Fig. 5. A complementary point of view is given
in Fig. 6 with the distribution W(p,) of the mean segment
densities p, in the network. From these figures we con-
clude that heterogeneities develop throughout the network
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FIG. 4 (color online). Effective rate diagrams for irregular
graphs of mean connectivity ¢ (at K = 1.5, for given values
of ). Effective rates follow from solving Eq. (1). Single graph
instances consisted of O(10%) junctions.
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FIG. 5 (color online). Fraction of segments in LD, HD, and
LD-HD phases, in the effective rate diagram of mean connec-
tivity (a) ¢ = 2 and (b) ¢ = 10, for K = 1.5. The transition (),
between the network and the segment regime (denoted by the
vertical dotted line) is determined by the condition that nyp
vanishes. The graph instances used are those of Fig. 4.

in three successive regimes (we discuss the case K > 1 and
refer to Ref. [22] for K = 1): (i) The network regime, for
low exchange rates (), is characterized by the presence of
LD and HD segments. The distribution W(p,) is marked by
the LD and HD peaks (whereas LD-HD coexistence seg-
ments are distributed evenly over the intermediate density
range). This bimodality implies a strongly heterogeneous
density at the network scale. (ii) In the segment regime, for
intermediate exchange rates, all LD segments have disap-
peared in favor of LD-HD segments. The distribution
W(p,) is dominated by the LD-HD peak. Although all
segments have similar average densities, the presence of
domain walls implies strong inhomogeneities on the seg-
ment scale. (iii) In the Langmuir regime, for large ex-
change rates (), the Langmuir phase dominates. All
segments have homogeneous densities except for small
regions near the boundaries, and no heterogeneities arise
beyond the scale of a few sites.

The transition between the network and segment
regimes is sharp (identified as the point (), where all LD
segments disappear, nyp = 0). Moreover, this transition has
an upper bound Q* = 1/2 + f(K)In{f(K)/[1/2 + f(K)]}
(with f(K) = |K — 1|/[2(K + 1)]), for which the LD

FIG. 6 (color online). The mean field distribution W(p,) of
segment densities for an irregular graph instance with mean
connectivity (a) ¢ = 2 and (b) ¢ = 10, of O(10*) junctions, for
K = 1.5. At low values the bimodal distribution of Ref. [11] is
identified. When increasing () the center peak gradually grows
while the edge peaks shrink. Network heterogeneities eventually
disappear at intermediate ) = (), leading to a unimodal den-
sity distribution.

phase disappears from the single segment phase diagram
[22]. In contrast, the crossover from the segment regime to
the Langmuir regime is progressive.

Conclusions.—We have analyzed active transport on a
disordered network immersed in a bulk reservoir, as may
be considered a simple model for cytoskeletal transport by
motor proteins. The dimensionless parameter () character-
izes the importance of particle exchange with the reservoir
with respect to active transport on the network. () therefore
also quantifies the competition between the heterogeneities
on the network, where particles undergo active transport,
and the homogenizing effect of the reservoir, where parti-
cles diffuse infinitely fast.

Three regimes arise, according to the scale at which
heterogeneities appear in the network: a network, a seg-
ment, and a Langmuir (site-dominated) regime, see Fig. 7.
Interestingly, these scales also set the complexity that
characterizes the theoretical analysis. In the network
regime, TASEP-LK transport is coupled throughout the
network, whereas in the opposite Langmuir regime the
physics is essentially determined by the attachment-
detachment process. In the intermediate segment regime,
decoupling implies that the transport characteristics of all
segments follows from those of a single segment.

Effective rate plots allow us to intuitively understand
transport processes through networks from the single-
segment transport characteristics; from the scattering of
rates over both the LD and HD zones we can directly
deduce the role of strong heterogeneities, see Fig. 4. This
approach yields valuable a priori insight into yet more
complex excluded volume transport such as TASEP with
extended particles [24], TASEP with multiple species [25],
and, as we show in Ref. [22], bidirectional motion [26]. As
in TASEP-LK, the single-segment phase diagram serves as
a basis for deducing the behavior on the network. From the
effective rate diagram approach it becomes also clear that
our results extend to types of disorder other than topologi-
cal which are relevant to biological systems, e.g., disorder
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FIG. 7 (color online). Illustration of the three regimes with
heterogeneities on a network, segment, and site scale, respec-
tively, according to the exchange parameter () (see main text for
Q. and Q). Particle densities are coded in gray scale. Pictorials
on top indicate the scale at which continuity equations are
solved.
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in the actions of particles at the junctions [21,27]. An
interesting open question is how finite diffusion [28] could
be handled within our approach.

Several conclusions may be relevant for modeling cytos-
keletal transport. First, we have shown that strong inho-
mogeneities in the spatial distribution of motor proteins
form for a wide range of parameters. Even in the case of
infinitely fast diffusion considered here they resist the
equalizing effect of bulk diffusion. Inhomogeneities would
therefore be even more relevant for finite diffusion.
Second, the presence of some exchange of motors between
the cytoskeleton and the cytoplasm may in fact simplify a
theoretical description, since the approximation of decou-
pling Eq. (2) yields excellent results for large enough
Q > Q. (see Figs. 3 and 7). Third, our analysis hints at
a way to regulate the spatial distribution of motors, and
therefore their cargos, in the cell, by way of modifying the
exchange parameter (). It can be controlled in independent
ways, via wp or w, (through the bare biochemical rate
or through the motor concentration), or via the length
dependence in (): regulating the cytoskeleton mesh
size, for example by crosslinker proteins, would make it
possible to control the length scale of heterogeneities.
Values reported in the literature [18,23] show that the
values used here (), K~ O(1)) are of a reasonable
order of magnitude, and it is therefore tempting to specu-
late that a moderate regulation of ()} might indeed allow a
crossover to be provoked between the various regimes in
living cells.
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