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Realizations of Majorana fermions in solid state materials have attracted great interest recently in

connection to topological order and quantum information processing. We propose a novel way to create

Majorana fermions in superconductors. We show that an incipient noncollinear magnetic order turns a

spin-singlet superconductor with nodes into a topological superconductor with a stable Majorana bound

state in the vortex core, at a topologically stable magnetic point defect, and on the edge. We argue that

such an exotic non-Abelian phase can be realized in extended t�J models on the triangular and square

lattices. It is promising to search for Majorana fermions in correlated electron materials where nodal

superconductivity and magnetism are two common caricatures.
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A Majorana fermion is an electrically neutral fermion
whose antiparticle is itself [1]. In recent years, Majorana
fermions have attracted growing attention in condensed
matter physics [2–4]. Specifically, Majorana fermions
can be realized as zero-energy bound states in the vortex
core or on the edge of certain two-dimensional super-
conductors. Instead of the usual Bose or Fermi statistics,
these vortices obey non-Abelian statistics [5–10] as
a manifestation of topological order [11,12]. Due to
this remarkable feature, Majorana bound states (MBSs)
can be utilized for topologically protected qubits in
fault-tolerant quantum computation [2,13,14]. Several sys-
tems have been proposed to realize MBSs, such as even-
denominator fractional quantum Hall states [5,6,8,15],
pþ ip superconductors [8–10] and superfluids [16,17],
superconductor-topological insulator interfaces [18–21],
s-wave Rashba superconductors [22–24] and spin-orbit-
coupled nodal superconductors [25].

In this Letter, we present a novel realization of MBSs in
spin-singlet superconductors with nodal excitations. We
show that when a coexisting noncollinear magnetic order
(NCMO) develops with a wave vector connecting two
nodes at opposite momenta, there will be one MBS in
each vortex core and on the edge of such topological
superconductors. Moreover, each stable point defect of
the NCMO also hosts a MBS. We demonstrate our pro-
posal with two explicit examples. The first one is a nodal
dþ id superconductor [26] coexisting with 1� 3 (or 3�3)
coplanar magnetic order on the triangular lattice. We argue
that this state is likely to be realized in a doped t-J2 model
on the triangular lattice and is relevant for the sodium
cobaltate superconductors NaxCoO2 � yH2O near x ¼ 1=3
[26,27]. The second example is a dx2�y2 superconductor

with coexistingQ ¼ ðQ0; Q0Þ NCMO on the square lattice
which may be realized in a doped t-J1-J2-J3 model on the

square lattice. Many strongly correlated materials, from
high-Tc cuprates to heavy-fermion compounds, exhibit the
d-wave superconductivity [28,29] in proximity to Ref. [30]
or coexisting with [29,31] magnetic orders. Our findings
suggest that Majorana fermions may exist in correlated
electron materials with magnetic frustration and nodal
superconductivity.
We begin with a general discussion. The low-energy

excitations of a nodal superconductor are massless Dirac
fermions with linear dispersion. Our basic idea is to create
a topological superconductor by adding a proper mass to
the nodal fermions. Consider the spin-singlet case with
n pairs of isolated nodes located at crystal momenta
�q‘, ‘ ¼ 1; . . . ; n. Expanding around the nodes, the
low-energy BCS Hamiltonian describing the quasipar-
ticle excitations has a generic form in the Nambu basis

�‘k � ðcq‘þk;"; c
y
�q‘�k;#; c�q‘þk;#;�cyq‘�k;"ÞT for each pair

of nodes at opposite momenta:

H eff ¼
X
‘;k

�y
‘kH‘k�‘k; H‘k ¼ ðn‘k � ~�Þ�z; (1)

and n‘k ¼ ðRe�q‘þk;�Im�q‘þk; �q‘þkÞ ¼ P
�k� ~v

‘
� þ

Oðjkj2Þ with � ¼ x, y. Here �k is the pairing gap function
and �k the kinetic energy. ~� and ~� are Pauli matrices
operating in the particle-hole (Nambu) and spin sectors,

respectively. A unitary rotation U � exp½i ~�‘ � ~�� turns
H‘k into UyH‘kU ¼ ðk1�x þ k2�yÞ�z where k1;2 are

linearly independent combinations of kx and ky [32].

Let’s focus on the ‘th pair of nodes at �ql. Clearly, a
gap will be generated by adding a generic mass term of the
form �0ð�xReM� �yImMÞ to the Hamiltonian,

UyH0
‘kU ¼ ðk1�x þ k2�yÞ�z þ �0ð�xReM� �yImMÞ;

(2)
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whereM is a complex order parameter. This is nothing but
the effective Hamiltonian for proximity induced s-wave
superconductivity on the surface of a 3D topological insu-
lator [18], with M playing the role of the superconducting
(SC) order parameter. The latter is known to contain a
single MBS in the vortex core. In the present context of
singlet nodal superconductors, the physical origin of the
local order M turns out to be a noncollinear (coplanar)
magnetic order described by

H cp ¼
X
r

½MðSxr þ iSyrÞei2q0�r þ H:c:�

¼ X
‘k

Mcyq‘þkþq0;"cq‘þk�q0;# þ H:c:; (3)

where Sar ¼ P
��c

y
r��

a
��cr�=2, a ¼ x, y, z are the spin

operators at site r. When the ordering wave vector 2q0

connects the nodes at �q‘, the magnetic scattering
generates precisely the mass term in Eq. (2). Since SOð3Þ
spin-rotational symmetry is completely broken, such a
NCMO bears a topologically stable point defect [33] char-
acterized by the nontrivial homotopy �1ðSOð3ÞÞ ¼ Z2.
The SC vortex in the Fu-Kane model [18] maps exactly
to such a stable point defect of NCMOM in (2). Therefore,
there is a non-Abelian MBS in each stable point defect of
noncollinear magnetic order.

Remarkably, the NCMO gives rise to a non-Abelian
topological superconductor since, among the two (even
and odd) combinations ck;eðoÞ � 1ffiffi

2
p ðcq‘þk;" � c�q‘þk;#Þ,

the odd combination is driven into the topologically
nontrivial weak-pairing phase [8] by the mass gap, while
the even one to the trivial strong-pairing phase. The situ-
ation is analogous to a doubled-layer � ¼ 1=2 fractional
quantum Hall system, where the Abelian (331) state can be
driven to a non-Abelian Pfaffian state by interlayer tunnel-
ing [8,34,35]. The existence of a single MBS in the SC
vortex core is thus implied by the vortex-boundary corre-
spondence [8]. Note that the existence of a single MBS will
not be affected by the other nodal fermions [25]. They are
spin-flip scattered either to finite energy away from the
Fermi level or, in special cases, to different nodes not
connected by pairing; they either remain gapless or are
gapped out in the magnetic sector.

We stress that it is crucial to require the magnetic order

to be noncollinear: a collinear spin order, such as H cl ¼
2m

P
rS

x
r cosð2q0 � rÞ ¼

P
‘k

P
� mcyq‘þkþq0;�

cq‘þk�q0; �� þ
H:c:, not only drives the Nambu pair (cq0þk;", c

y
�q0�k;#), but

also (c�q0þk;", c
y
q0�k;#) into the weak-pairing phase, creat-

ing two copies of weak-pairing pþ ip superconductors
with two MBSs in the vortex core and two counterpropa-
gating Majorana modes on the edge. Thus, there will be no
stable MBSs in this case since the two branches can scatter
and open up a gap in the energy spectrum.

On general grounds, NCMO can be realized in frustrated
systems from the residual spin-spin interactions between

the nodal fermions in the SC state. Its presence (3) breaks
both inversion and spin rotational symmetry. Thus, the
spin-singlet pairing can mix with triplet pairing. When
the triplet pairing amplitude is small compared to jMj,
the system will stay in the gapped non-Abelian topological
phase. In the opposite limit, a dominant one-component
chiral triplet pairing state is well known to be in the
non-Abelian weak-pairing phase [8,9]. Therefore we
expect the non-Abelian topological superconductor to be
stable against the mixing between singlet and triplet
pairing. We next demonstrate the above predictions with
direct calculations in two specific examples on the trian-
gular and the square lattices.
We start with the nodal chiral superconductors on the

triangular lattice proposed for the SC state of hydrated
sodium cobaltates [36]. Recent NMR measurements find
strong evidence for singlet pairing [27,37,38] with nodal
excitations at a critical doping xc � 0:26 [38]. Specifically,
it was shown [26] that second nearest neighbor (NN) dþ id
pairing can be the dominant pairing channel on the electron
doped triangular lattice where the complex gap function
has six isolated zeros inside the first Brillouin zone (BZ).
The Fermi surface (FS) crosses these nodes at a critical
doping xc, producing six Dirac points as shown in Fig. 1(a).
The SC states at x < xc and x > xc are separable by a
topological phase transition. We thus consider a simple
effective pairing Hamiltonian

H ¼ X
k�

�kc
y
k�ck� þX

k

ð�kck"c�k# þ H:c:Þ; (4)

where �k is the band dispersion with hopping amplitudes
ðt1; t2; t3Þ ¼ ð�202; 35; 29Þ meV for the first three

NN [26]. �k¼2�2½cosðk1�k2Þþei2�=3 cosð2k1þk2Þþ
ei4�=3 cosðk1þ2k2Þ� is the second NN dþ id pairing gap

function in the basis k ¼ k1 ~b1 þ k2 ~b2 shown in Fig. 1(a).
The six Dirac nodes (Ni, i ¼ 1; . . . ; 6) are located at
ðk1;k2Þ¼�ð2�=3;0Þ, �ð0; 2�=3Þ, and �ð2�=3;�2�=3Þ.

O N1

N2N3

N4

N5
N6

(a)

b2

b1

(b)

FIG. 1 (color online). (a) The first BZ of the triangular lattice
and the six nodes (Ni) of the second NN dþ id pairing gap
function. The normal state FS (dashed circle) crosses the gap
nodes at doping xc for the nodal chiral superconductor. The
arrow indicates the wave vector of the 1� 3 NCMO shown in
(b) with the magnetic zone shown by the dashed parallelogram.
~a1;2 are two primitive lattice vectors. The reciprocal vectors are
~b1;2 with ~ai � ~bj ¼ 	i;j.
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Such a dþ id superconductor exhibits quantized spin
Hall conductance [8] associated with the winding number
W of the unit vector n̂k ¼ ðRe�k;�Im�k; �kÞ=Ek where

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ j�kj2

q
. When the FS lies inside the Dirac

points (x > xc), W ¼ �2 and there are two
counterclockwise-propagating chiral fermions on the
edge; each is charge neutral but carries spin @=2 [26].
When the FS encloses the six gap nodes (x < xc), W ¼ 4
and there are four spin-carrying chiral fermions on
the edge.

A NCMO described by H cp in Eq. (3), with 2q0 point-

ing fromNiþ3 toNi [Fig. 1(a)], produces a mass gap for the
nodal fermions as discussed above. The magnetic order
corresponds to the 1� 3 coplanar pattern shown in
Fig. 1(b). The nodal chiral superconductor is thus turned
into a non-Abelian topological superconductor with a
winding number W ¼ þ1. Similar to a spinless pþ ip
superconductor [8], it supports a single MBS in the vortex
core and on the sample edge. To demonstrate the latter, we
calculate explicitly the edge spectrum of H þH cp on a

cylinder with two parallel edges along the ~a2 direction. The
solutions of the BdG equations [39] are shown in Fig. 2(a)
for �2 ¼ 150 meV and M ¼ 200 meV. The bulk excita-
tions are completely gapped since the scattering wave
vector 2q0 not only connects the Nambu pair (N5, N2)
but also (N3, N4) and (N1, N6) in the magnetic sector.
There is a single branch of the gapless Majorana mode
crossing k ¼ 0 that is localized at the edges. We also
performed direct calculations of the SC vortex and the
magnetic defect spectrum on 90� 30 periodic lattices in
the presence of a vortex-antivortex pair and a pair of stable
point defects, respectively [39]. The results are shown in
Figs. 2(b) and 2(c). Clearly, a single zero-energy MBS
emerges with a density profile localized in the SC vortex
core and at the magnetic defect. Note that since the topo-
logical superconductor is in the gapped phase, its stability
is protected against perturbations that are not strong
enough to destroy the gap and create a quantum phase
transition into a different state. As a result, the non-
Abelian topological phase supporting MBS proposed
here is not limited to very particular parameters and will
remain stable when, e.g., small variations in doping around
xc cause the FS to deviate from the gap nodes, or a small
NN pairing component induced by a subdominant NN
exchange J1 causes the gap nodes to shift and the magnetic
ordering wave vector to not precisely connect the pair of
nodes at opposite momenta.

To see how the 1� 3 NCMO can arise microscopically,
we consider the second NN antiferromagnetic Heisenberg
model, i.e., the J2 model, on the triangular lattice. The
classical ground state is well known to have 3� 3 NCMO
[40,41]: on each of the three sublattices connected by
second-NN bonds the spins exhibit 120 degree coplanar
order. There is a large ground state degeneracy due to the
relative spin orientations. This 3� 3 NCMO already

induces a single MBS crossing k ¼ 0 in the edge spectrum
[39]. Quantum fluctuations would lift the degeneracy
through the order-due-to-disorder mechanism [42–44],
and the true quantum ground state has the 1� 3 order.
We have carried out a Schwinger-boson large-S expansion
study [39] of the spin-S Heisenberg J2 model and found
that when S is larger than a critical value Sc � 0:17 (such
as for spin-1=2), the system develops the 1� 3 NCMO
shown in Fig. 1(b). This suggests that if the residual
interactions between the nodal fermions are dominated
by the second NN Heisenberg exchange J2, the 1� 3
NCMO is likely to develop with 2q0 connecting the gap
nodes at opposite momenta as shown in Fig. 1. More
intriguingly, to the extent that J2 would favor a second
NN dþ id resonance valence bond pairing state, it is likely
that both the nodal chiral superconductor and the NCMO
can emerge from the same exchange interaction in a doped
t-J2 model.
We turn to the second example of a more familiar nodal

dx2�y2 superconductor on the square lattice described by

the same pairing Hamiltonian H in Eq. (4), but with the

FIG. 2 (color online). Edge state spectrum (a1) obtained on a
cylinder of length L1 ¼ 150. Vortex spectrum (b1) and magnetic
defect spectrum (c1) obtained on 90� 30 triangular lattices with
periodic boundary conditions. The momentum k of the Majorana

mode in (a1) is along ~b2 direction in the magnetic zone in Fig. 1.
Right column: The density profiles of the zero-energy MBS. The
SC vortex-antivortex pair (b2) and the pair of magnetic defects
(c2) are placed at ðr1; r2Þ ¼ ð23:5; 8:5Þ and (68.5,23.5), where
r ¼ r1 ~a1 þ r2 ~a2.
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dispersion �k ¼ �2t½cosðk1 þ k2Þ þ cosðk1 � k2Þ� �

for NN hopping t, and the NN dx2�y2 pairing gap function

�k ¼ 2�1½cosðk1 þ k2Þ � cosðk1 � k2Þ�. The momentum

is defined as k ¼ k1 ~b1 þ k2 ~k2 as shown in Fig. 3. The four
nodal points are located at N1;3:ðk1 ¼ 0; k2 ¼ �q0Þ and

N2;4:ðk1¼�q0;k2¼0Þ with q0 ¼ arccosð� 

4tÞ. A NCMO

described by H cp in Eq. (3) with ordering momentum

Q0 ¼ ðQ0; Q0Þ ¼ 2q0 ¼ 2q0 ~b2 gaps out the (cN3;", c
y
N1;#)

branch and creates a single MBS. Figure 3 shows a

specific example with 
 ¼ �2
ffiffiffi
2

p
t and q0 ¼ �=4,

together with the spin configuration. In this case, the
commensurate magnetic order cannot gap out all nodes
since the Hamiltonian is still invariant under time rever-
sal followed by a lattice translation [45]. As shown in
Fig. 3(a), the NCMO turns the original four spin-
degenerate nodes (black circles) into six non-degenerate
ones (red diamonds). The vanished pair of nodes is gapped
out by the magnetic mass (3) and enters the weak-pairing
phase. The calculated edge spectra along (1,1) direction is
plotted in Fig. 4 near the magnetic zone boundary, showing
the zero energy MBS localized on the parallel edges.
Similar results are obtained at other commensurate values
of q0 such as q0 ¼ �=3. Since the gapless bulk excitations
are located at different momenta, the MBS near k2 ¼ � is
expected to be stable against impurities and the mixing
with bulk excitations [25]. For a generic doping, q0 is
incommensurate with the lattice and a corresponding
incommensurate NCMO could produce a full gap for
bulk excitations.

A remarkable feature seen in Fig. 4 is that the Majorana
mode on the edge is dispersionless; i.e., it is localized and
does not possess a chirality. This boundary zero-energy flat
band, which begins and terminates at the reconstructed
nodes of bulk excitations, is a direct consequence of the
nontrivialZ2 winding number (topological index of class D
in d ¼ 1 [46]) of the momentum-space Hamiltonian
around the nodes [47] in Fig. 3(a). The Majorana flat
band is analogous to the Fermi arc on the 2D surface of

3D time-reversal symmetry breaking Weyl semimetals
proposed for pyrochlore iridates [48]. Nevertheless, the
time reversal symmetry breaking by the magnetic order
(3) can induce a small imaginary part in �1, which would
generate a full gap for bulk excitation and a single MBS on
the edge dispersing across k2 ¼ � with a well-defined
chirality [39].
It is possible to realize such a NCMO in the Heisenberg

J1-J2-J3 model on the square lattice. The classical ground

state has NCMO with momenta Q0 ¼ Q0
~b1;2 where

cosðQ0Þ ¼ �J1=ð2J2 þ 4J3Þ for 4J3 þ 2J2 � J1 and
J3 � J2=2 [49,50]. There is numerical evidence that the
latter survives in the quantum S ¼ 1=2 Heisenberg
J1-J2-J3 model in a wide parameter range [51,52].
We thus expect that such non-Abelian magnetic d-wave
superconductors may be realized in certain parameter
regime of the doped t-J1-J2-J3 model.
In summary, we proposed a new type of non-Abelian

topological superconductors. They emerge when spin-
singlet superconductors with isolated nodes coexist with
NCMO at the wave vector connecting the nodes at opposite
momenta. Majorana fermions arise in the vortex core
and on the edge of such magnetic superconductors.
Remarkably, each stable point defect of the noncollinear
magnetic order also hosts a single MBS. Since magnetism
and unconventional superconductivity are common fea-
tures of strong correlation, our findings suggest searching
for the MBS in correlated materials with magnetic frus-
tration and nodal superconductivity.

(a)

k1

k2

N1
N2

N3
N4

(b)

FIG. 3 (color online). (a) The first BZ of the square lattice.
Black circles denote the four nodes (Ni) where the FS intersects
the nodal lines of the dx2�y2 pairing gap function. The NCMO

with Q0 ¼ ð�=2; �=2Þ (black arrow) turns them into six red
diamonds inside the magnetic zone (red rectangle). (b) The spin
configuration of the (�=2, �=2) NCMO.
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FIG. 4 (color online). Edge spectra as a function of momentum
k2 near the magnetic zone boundary for the dx2�y2 superconduc-

tor with (�=2, �=2)NCMO. The spectrum is zoomed in around
k2 ¼ � where a flat band of zero energy MBS is localized on the
two edges (blue and magenta). Red dispersing lines are the bulk
states with nodes located at k2 � �� 0:04.
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