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The third-integer coupling resonance at �x � 2�z ¼ ‘, known as the Walkinshaw resonance, is

important in high-power accelerators. We find that, when the betatron tunes ramp through a

Walkinshaw resonance the fractional emittance growth (FEG) is a universal function of the effective

resonance strength:G1;�2;‘
ffiffiffiffiffiffi
�xi

p j�ð�x � 2�zÞ=�nj�1=2, whereG1;�2;‘ is the resonance strength; �xi and �zi
are the initial horizontal and vertical emittances, respectively; and j�ð�x � 2�zÞ=�nj is the resonance

crossing rate per revolution. At large effective resonance strengths, the FEG reaches an asymptotic

maximum value ðFEGÞmax � 2�xi=�zi for �xi � 1
2 �zi or �zi=ð2�xiÞ for �xi � 1

2 �zi. There is little emittance

exchange at �xi ¼ 1
2 �zi, which can be used to minimize emittance growth in crossing a Walkinshaw

resonance.
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Low-order coupling resonances are of concern to the
design and operation of circular accelerators. The third-
integer difference resonance �x � 2�z ¼ ‘, known as the
Walkinshaw resonance, is sometimes unavoidable in many
high-power accelerators, such as isochronous cyclotrons,
nonscaling fixed field alternating gradients, and other low-
energy accelerators. This resonance becomes a focus of the
design and operation of all cyclotrons [1]. It has been
termed a ‘‘formidable barrier’’ and ‘‘impassable’’ [2] and
may cause emittance growths and beam loss. Although all
the adverse effects of the resonance have long been expe-
rienced, the dynamic of emittance growths, however, has
not been fully analyzed and understood. So far, the only
means of reducing emittance growths have been fast pas-
sage and the reduction of the resonance strength.

There had been theoretical analysis on the �x � 2�z ¼ ‘
resonance [2,3] and subsequent experimental measure-
ments in storage rings [4,5]. These papers, however, deal
essentially with single-particle motion near the resonance
at fixed betatron tunes. This Letter investigates instead the
beam dynamics while the betatron tunes ramp through
the third-integer coupling resonance. We study emittance
growths and scaling laws. Methods are given to alleviate
the emittance growth.

In term of the horizontal and vertical action-angle phase-
space coordinates (Jx,�x) and (Jz,�z), theHamiltonian near
the �x � 2�z ¼ ‘ resonance can be approximated as [5,6]

H¼ �xJxþ�zJzþ 1

2
�xxJ

2
x þ�xzJxJzþ 1

2
�zzJ

2
z

þG1;�2;‘J
1=2
x Jz cosð�x� 2�z� ‘�þ�1;�2;‘Þþ �� � :

Here, the orbiting angle � ¼ s=R serves as the ‘‘time coor-
dinate’’;R is the themean radius; �x and �z are, respectively,
the horizontal and vertical betatron tunes; ‘ is an integer; and
the nonlinear detuning parameters are

�xx;zz ¼ �
I �2

x;zB
000
z ðsÞ

16�B	
ds; �xz ¼

I �x�zB
000
z ðsÞ

8�B	
ds:

The resonance strengthG1;�2;‘ � 0 and its phase �1;�2;‘ are

represented by

G1;�2;‘e
j�1;�2;‘ ¼

ffiffiffi
2

p
8�

I
�1=2

x �z

B00
z ðsÞ
B	

� ej½
xðsÞ�2
zðsÞ�ð�x�2�z�‘Þ��ds;

where �x;y and 
x;yðsÞ ¼
R
s
0 ds

0=�x;yðs0Þ are the horizontal
or vertical betatron functions and betatron phases. In the
above equation, B00

z and B000
z are, respectively, the sextupole

and octupole magnetic field components around the ring,
with B	 representing the rigidity of the beam.
The Hamiltonian is canonically transformed to the rotat-

ing frame using the generating function

F2ð�x;�z;J1; J2Þ ¼ ð�x� 2�z� ‘�þ�1;�2;‘ÞJ1þ�zJ2:

The coordinate transformation is

�1 ¼ �x � 2�z � ‘�þ �1;�2;‘; Jx ¼ J1;

�2 ¼ �z; Jz ¼ �2J1 þ J2;

and the new Hamiltonian becomes ~H ¼ H1ðJ1; �1; J2Þ þ
H2ðJ2Þ, where H2ðJ2Þ ¼ �zJ2 þ 1

2�22J
2
2 and

H1ðJ1; �1; J2Þ ¼ �J1 þ 1

2
�11J

2
1 þ �12J1J2

þG1;�2;‘J
1=2
1 ðJ2 � 2J1Þ cosð�1Þ: (1)

Here, � ¼ �x � 2�z � ‘ is the resonance proximity para-
meter, and the transformed detuning parameters are �11 ¼
�xx � 4�xz þ 4�zz, �12 ¼ �xz � 2�zz, and �22 ¼ 4�zz.

Hamilton’s equations of motion are dJ2
d� ¼ � @ ~H

@�2
¼ 0,

d�2

d� ¼ @ ~H
@J2

, and
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dJ1
d�

¼ � @ ~H

@�1

¼ G1;�2;‘J
1=2
1 ðJ2 � 2J1Þ sinð�1Þ; (2)

d�1

d�
¼ þ @ ~H

@J1
¼ �þ �12J2 þ �11J1

þG1;�2;‘

J2 � 6J1

2J1=21

cosð�1Þ: (3)

Particle dynamics obey Eqs. (2) and (3) at constant J2 and
H1, which are invariants if the betatron tunes are not
changed. However, we study the dynamics of particle
motion during the passage of a resonance. Even when the
betatron tunes are ramped, J2 remains an invariant. In
reality, particle motion is under the influence of many other
resonances; J2 is quasi-invariant. Since the rate of reso-
nance crossing is normally small, H1 changes slowly.
Particle motion follows a quasiconstant H1 contour.

The fixed points of the Hamiltonian H1 are obtained by
equating both Eqs. (2) and (3) to zero. Two unstable fixed
points (UFPs) are located at the intersections between the
Courant-Snyder (CS) circle (2J1 ¼ J2) and the coupling arc.
Separatrices at other various conditions have been shown
in Ref. [3]. Figure 2 in Ref. [5] also shows the experimental
data of one of the separatrices for this resonance, where the
CS and coupling circles are expressed in phase-space coor-
dinates ðX;PÞ¼ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�xJ1
p

cos�1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�xJ1

p
sin�1Þ, with �x

being the horizontal betatron function at the observation
point. The separatrix is the Hamiltonian torus that passes
through the unstable fixed points; i.e.,

1

2
ðJ2 � 2J1Þ

�
��� 1

2
�11

�
J1 þ J2

2

�

� �12J2 þ 2G1;�2;‘J
1=2
1 cosð�1Þ

�
¼ 0;

which is composed of a CS circle 2J1 ¼ J2 and a coupling

arc �11ð2J1Þ � 4
ffiffiffi
2

p
G1;�2;‘

ffiffiffiffiffiffiffiffi
2J1

p
cos�1 þ 4�þ 4�12J2 þ

�11J2 ¼ 0. For particles with 2J1 < J2, their flows
revolve around the stable fixed points at � ¼ 0 or �, and

2�11J
3=2
1 	6G1;�2;‘J1þ2ð�þ�12J2ÞJ1=21 
G1;�2;‘J2 ¼ 0.

Experimental data depicting the Hamiltonian flow of these
particles have been shown in Fig. 7 of Ref. [5].

Now, we study the effects of the Walkinshaw resonance
on a beam of particles. When the betatron tunes ramp
through a Walkinshaw resonance, all fixed points move
across the beam, and the beam distribution will evolve as
well. Consider a beam with bi-Gaussian distribution

	2ðJx; JzÞ ¼ 1

�x�z
exp

�
� Jx
�x

� Jz
�z

�
; (4)

where �x and �z are, respectively, the horizontal and
vertical rms emittances of the beam [6]. Now, Jx and Jz
are transformed to J1 and J2. The invariant distribution
function in J2 can be obtained by integrating over J1:

	1ðJ2Þ ¼ 1

2�x � �z

�
exp

�
� J2

2�x

�
� exp

�
� J2

�z

��
: (5)

As the betatron tunes ramp through the �x � 2�z ¼ ‘
resonance, the action J2 is invariant, and the distribution
function 	1ðJ2Þ is invariant. The first moment hJ2i ¼
2�x þ �z is also invariant, and thus ��z ¼ �2��x. For
the above bi-Gaussian distribution, the maximum of the
invariant distribution function occurs at

J2;max ¼ 2�x�z
2�x � �z

ln
2�x
�z

:

Since J2 varies from particle to particle, it is advan-
tageous to study the beam distribution in the variable
u ¼ J1=J2. The transformed beam distribution is

	2aðu; J2Þ ¼ J2
�x�z

exp

�
�
�
u

�x
þ 1� 2u

�z

�
J2

�
; (6)

where the variables u 2 ½0; 12� and J2 2 ½0;1�. In this

representation, all particles in the beam have the same
CS circle at u ¼ J1=J2 ¼ 1=2. We also note that, when
�x ¼ 1

2 �z, 	2aðu; J2Þ is independent of u for all J2.

Integrating over J2, we find the 1D distribution as

	1aðuÞ ¼ �x=�z
½�x=�z þ ð1� 2�x=�zÞu�2

�

�
1

2
� u

�
; (7)

where � is the Heaviside step function. Figure 1 shows
Eq. (7) for the bi-Gaussian distribution. When �xi >

1
2 �zi,

there are more particles at higher J1 actions, and we
expect that the horizontal emittancewill decrease in crossing
a Walkinshaw resonance. Conversely, when �xi <

1
2 �zi, the

horizontal emittance will increase in crossing the Walkin-
shaw resonance. At the condition �xi ¼ 1

2 �zi, the distribution

function is uniform, and we expect no emittance exchange
during the crossing of a Walkinshaw resonance.

FIG. 1 (color online). The distribution of a bi-Gaussian beam
in the u ¼ J1=J2 action coordinate for various horizontal and
vertical emittance ratios �xi=�zi ¼ 0:1; 0:2; . . . ; 2:0. If �xi >

1
2 �zi,

there are more particles with higher J1 ¼ Jx actions, and vice
versa. The distribution is uniform when �xi ¼ 1

2 �zi.
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When the betatron tunes ramp through a �x � 2�z ¼ ‘
resonance with �xi >

1
2 �zi, there are more particles with

higher horizontal actions. They are drawn along the
coupling arc toward the center of the CS circle with their
horizontal actions reduced and vertical actions increased.
With 2��x þ��z ¼ 0, the fractional emittance growth
(FEG), defined below, has the properties [7]

FEG �
��������
��x
�xi

��������þ
��������
��z
�zi

��������¼
��������
��x
�xi

��������
�
2�xi
�zi

þ 1

�

¼
��������
��z
�zi

��������
�
�zi
2�xi

þ 1

�
: (8)

Multiparticle simulations were performed to study the
dynamics of resonance crossing. Details of these simula-
tions have been published in Ref. [8]. Macroparticles,
typically 5000, are populated in a bi-Gaussian distribution
with initial rms emittances �xi and �zi. The rms beam
emittances are computed by using the second moments
of the phase-space distributions [6] at each revolution.
Sextupoles are used to control the strength of the
Walkinshaw resonance, and octupoles are used to control
the detuning parameters. The betatron tunes are varied
linearly to cross a �x � 2�z ¼ ‘ resonance. Figure 2 shows
the evolution of the horizontal and vertical emittances
during the crossing the resonance, with �11 ranging from
�2000 to þ2000 ð�mÞ�1, which corresponds to a tune
spread of 6�11�xi � 0:060 within the beam.

The beam may encounter the resonance earlier or later,
depending on the detuning parameters, but the final
FEGs are nearly independent of the detuning parameters.
Simulations with larger emittances will reach the same
conclusion. In fixed field alternating gradient accelerators
and cyclotrons, the ramp rates depend on the available rf
voltage and quadrupole ramping rate. One would try to

ramp through the resonances as fast as possible to avoid
adverse effects. The typical tune-ramp rate is about
10�5–10�3 per revolution, and we use these typical tune-
ramp rates in our simulations. At these tune-ramp rates,
particle motion follows the Hamiltonian flow or the motion
is ‘‘adiabatic.’’
Now, we study the scaling properties of the FEG

vs accelerator parameters. Figure 3 shows results of
simulations with �xi ¼ �zi. The FEGs depend essentially

on a single effective resonance strength parameter Geff ¼
G1;�2;‘

ffiffiffiffiffiffi
�xi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ð�x � 2�zÞ=�nj
p

but are independent of

detuning parameters. Note that the maximum FEG for equal
initial emittances is about 1.5. This means that the maximum
fractional emittance growth in the vertical plane is about
1.0 and that the maximum fractional horizontal emittance
reduction is about 0.5.
Figure 1 shows that there are more particles in lower

J1 actions when �xi <
1
2 �zi. Thus, the horizontal emittance

will increase and the vertical emittance will decrease.
Figure 4 shows the emittance exchange for �xi¼1��m,
and �zi ¼ 10 ��m with j�ð�x � 2�zÞ=�nj ¼ 8� 10�5.
The horizontal emittance increases while the vertical emit-
tance decreases with the FEG� 4:5.
According to the FEG scaling law inEq. (8),when 2�xi �

�zi, the maximum FEG is�2�xi=�zi, and, when 2�xi � �zi,
the maximum FEG is ��zi=ð2�xiÞ. Figure 5 gathers a large
amount of simulation data, depicting the maximum FEG vs
�xi=�zi. The dashed and dotted lines show the asymptotic
maxima FEG ¼ 2�xi=�zi and �zi=ð2�xiÞ of Eq. (8). At �xi �
1
2 �zi, there is little emittance exchange. Although Fig. 1 is

based on bi-Gaussian distribution, the FEG scaling law
works for other distributions as well. The circle, rectangular,
and diamond symbols in Fig. 5 represent results for a beam
with an initial uniformbeamdistribution in both or one of the

FIG. 2 (color online). The resonance crossing rate is �1:0�
10�4 for a third-integer difference resonance with resonance
strength G1;�2;‘ ¼ 3:0 ð�mÞ�1=2 and �xi ¼ �zi ¼ 5:0 ��m.

The detuning parameters are �11 ¼ 0 and 
2000 ð�mÞ�1.

FIG. 3 (color online). The FEG vs the effective resonance
parameter for initially equal-emittance Gaussian-distributed
beams. Note that the FEG depends only on a single effective

resonance strength: G1;�2;‘
ffiffiffiffiffiffi
�xi

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ð�x � 2�zÞ=�nj
p

. The FEGs

are independent of the detuning parameters �11.
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horizontal and vertical phase spaces. If the initial beam
distribution in the horizontal and vertical planes is indepen-
dent and has the same functional form, i.e., 	3ðJx;JzÞ¼
fðJx=�xÞfðJz=�zÞ, the corresponding beam distribution
function 	3aðu; J2Þ will be symmetric in the u variable at
�x � 1

2 �z. Thus, there will be no net emittance exchange

because there are an equal number of particles that increase
or decrease their actions in crossing the resonance.

In conclusion, multiparticle simulations and Hamiltonian
dynamics are employed to study beam properties in crossing
a Walkinshaw resonance. We find that the emittance growth
obeys a scaling law depending essentially on a dimensionless

effective resonance strength parameter:G1;�2;‘
ffiffiffiffiffiffi
�xi

p j�ð�x �
2�zÞ=�nj�1=2 (see Fig. 3), which is detuning-parameter-
independent. The FEG reaches a maximum saturation value
at large effective resonance strengths. The maximum FEG
depends essentially on �xi=�zi. For 2�xi � �zi, the maxi-
mum FEG is 2�xi=�zi, and, for 2�xi � �zi, the maximum
FEG is �zi=ð2�xiÞ, as shown in Fig. 5. If the initial emittances
of the beam are known, one can predict the emittances after
crossing a strong third-integer coupling resonance.

To avoid emittance exchange in passing through a
Walkinshaw resonance, we can prepare a beam with an
initial horizontal emittance equal to half of the vertical.
The minimization of emittance growths and beam loss
crossing a Walkinshaw resonance could hopefully lead to
an improvement in beam currents in circular accelerators.

Now, we consider a beam with equal initial horizontal
and vertical emittance �0. After passing through a strong
�x � 2�z ¼ ‘ resonance, the final emittances will be
�x � 1

2 �0 and �z � 2�0. If the vertical aperture is not an

issue, the smaller horizontal emittance can pass through a
smaller magnetic or electric septum gap. If this resulting
beam is made to pass through the same resonance again at a
similarly strong strength, the horizontal emittance and
vertical emittance will be exchanged again and restored

to their original values; i.e., the final beam emittances are
�x � �z � �0. All these predictions can be tested experi-
mentally in cyclotrons or circular accelerators.
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FIG. 4 (color online). The resonance crossing rate is �8:0�
10�5 for a third-integer difference resonance of strength
G1;�2;‘¼3:02 ð�mÞ�1=2, �xi¼1:0��m, and �zi ¼ 10:0 ��m.

The detuning parameter is fixed at �11 ¼ 600 ð�mÞ�1.

FIG. 5 (color online). The maximum FEG vs �xi=�zi. The
dashed and dotted lines correspond to FEGmax�2�xi=�zi and
�zi=2�xi. Note that, near �xi � 0:5�zi, there is no emittance ex-
change. The circle, rectangular, and diamond symbols correspond
touniformdistribution in both or one of the transverse phase spaces,
and all other data are obtained from bi-Gaussian distribution.
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